R Kelly Dawe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812038/publications.pdf

Version: 2024-02-01

78 11,283 43 78
papers citations h-index g-index

86 86 86 10545
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Frequent Spindle Assembly Errors Require Structural Rearrangement to Complete Meiosis in Zea mays. International Journal of Molecular Sciences, 2022, 23, 4293.	4.1	1
2	The maize abnormal chromosome 10 meiotic drive haplotype: a review. Chromosome Research, 2022, 30, 205-216.	2.2	11
3	The maize gene <i>maternal derepression of $r1 < li$ > encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. Plant Cell, 2022, 34, 3685-3701.</i>	6.6	16
4	Maize centromeric chromatin scales with changes in genome size. Genetics, 2021, 217, .	2.9	11
5	Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
6	QTL Map of Early- and Late-Stage Perennial Regrowth in Zea diploperennis. Frontiers in Plant Science, 2021, 12, 707839.	3.6	5
7	De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373, 655-662.	12.6	282
8	Haploid induction by a maize <i>cenh3</i> null mutant. Science Advances, 2021, 7, .	10.3	70
9	Distinct kinesin motors drive two types of maize neocentromeres. Genes and Development, 2020, 34, 1239-1251.	5.9	27
10	Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nature Communications, 2020, 11, 2288.	12.8	39
11	Charting the path to fully synthetic plant chromosomes. Experimental Cell Research, 2020, 390, 111951.	2.6	12
12	Gapless assembly of maize chromosomes using long-read technologies. Genome Biology, 2020, 21, 121.	8.8	101
13	Genome-Scale Sequence Disruption Following Biolistic Transformation in Rice and Maize. Plant Cell, 2019, 31, 368-383.	6.6	96
14	A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize. Cell, 2018, 173, 839-850.e18.	28.9	104
15	Is It Ordered Correctly? Validating Genome Assemblies by Optical Mapping. Plant Cell, 2018, 30, 7-14.	6.6	40
16	Centromere Size and Its Relationship to Haploid Formation in Plants. Molecular Plant, 2018, 11, 398-406.	8.3	49
17	Modeling the Evolution of Female Meiotic Drive in Maize. G3: Genes, Genomes, Genetics, 2018, 8, 123-130.	1.8	18
18	Fitness Costs and Variation in Transmission Distortion Associated with the Abnormal Chromosome 10 Meiotic Drive System in Maize. Genetics, 2018, 208, 297-305.	2.9	23

#	Article	IF	CITATIONS
19	Genomics of Maize Centromeres. Compendium of Plant Genomes, 2018, , 59-80.	0.5	2
20	The maize W22 genome provides a foundation for functional genomics and transposon biology. Nature Genetics, 2018, 50, 1282-1288.	21.4	183
21	Functional diversification of the kinesinâ€14 family in land plants. FEBS Letters, 2018, 592, 1918-1928.	2.8	20
22	Loss of RNA-Directed DNA Methylation in Maize Chromomethylase and DDM1-Type Nucleosome Remodeler Mutants. Plant Cell, 2018, 30, 1617-1627.	6.6	41
23	Improved maize reference genome with single-molecule technologies. Nature, 2017, 546, 524-527.	27.8	1,113
24	Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biology, 2017, 18, 121.	8.8	46
25	High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events. Frontiers in Plant Science, 2016, 7, 308.	3.6	28
26	The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization. Frontiers in Plant Science, 2016, 7, 1277.	3.6	26
27	Liveâ€Cell Imaging of Meiotic Spindle and Chromosome Dynamics in Maize (<i>Zea mays</i>). Current Protocols in Plant Biology, 2016, 1, 546-565.	2.8	3
28	Anaphase asymmetry and dynamic repositioning of the division plane during maize meiosis. Journal of Cell Science, 2016, 129, 4014-4024.	2.0	13
29	Gene Expression and Chromatin Modifications Associated with Maize Centromeres. G3: Genes, Genomes, Genetics, 2016, 6, 183-192.	1.8	30
30	Generation of a Maize B Centromere Minimal Map Containing the Central Core Domain. G3: Genes, Genomes, Genetics, 2015, 5, 2857-2864.	1.8	2
31	Genetic and Genomic Toolbox of <i>Zea mays</i> . Genetics, 2015, 199, 655-669.	2.9	55
32	Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres. Genetics, 2015, 200, 1105-1116.	2.9	20
33	Accessible DNA and Relative Depletion of H3K9me2 at Maize Loci Undergoing RNA-Directed DNA Methylation Â. Plant Cell, 2015, 26, 4903-4917.	6.6	106
34	Diversity and evolution of centromere repeats in the maize genome. Chromosoma, 2015, 124, 57-65.	2.2	21
35	RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14728-14733.	7.1	179
36	Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Research, 2014, 24, 107-116.	5 . 5	77

#	Article	IF	CITATIONS
37	Intragenomic Conflict Between the Two Major Knob Repeats of Maize. Genetics, 2013, 194, 81-89.	2.9	31
38	Maize chromosomal knobs are located in gene-dense areas and suppress local recombination. Chromosoma, 2013, 122, 67-75.	2.2	33
39	CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Research, 2013, 23, 628-637.	5.5	310
40	Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications. Nucleic Acids Research, 2012, 40, 1550-1560.	14.5	45
41	Megabase-Scale Inversion Polymorphism in the Wild Ancestor of Maize. Genetics, 2012, 191, 883-894.	2.9	94
42	RNA as a Structural and Regulatory Component of the Centromere. Annual Review of Genetics, 2012, 46, 443-453.	7.6	52
43	Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Research, 2012, 20, 403-412.	2.2	53
44	Stable integration of an engineered megabase repeat array into the maize genome. Plant Journal, 2012, 70, 357-365.	5.7	17
45	Mechanisms of plant spindle formation. Chromosome Research, 2011, 19, 335-344.	2.2	64
46	Distinct influences of tandem repeats and retrotransposons on CENH3 nucleosome positioning. Epigenetics and Chromatin, 2011 , 4 , 3 .	3.9	30
47	DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA. PLoS Genetics, 2010, 6, e1000835.	3.5	122
48	Widespread Gene Conversion in Centromere Cores. PLoS Biology, 2010, 8, e1000327.	5.6	109
49	Fused sister kinetochores initiate the reductional division in meiosis I. Nature Cell Biology, 2009, 11, 1103-1108.	10.3	85
50	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	12.6	3,612
51	Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons. PLoS Genetics, 2009, 5, e1000743.	3.5	168
52	Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Research, 2007, 16, 341-351.	2.4	52
53	Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Research, 2007, 15, 767-775.	2.2	39
54	Centromeres put epigenetics in the driver's seat. Trends in Biochemical Sciences, 2006, 31, 662-669.	7.5	91

#	Article	IF	CITATIONS
55	Precise Centromere Mapping Using a Combination of Repeat Junction Markers and Chromatin Immunoprecipitation–Polymerase Chain Reaction. Genetics, 2006, 174, 1057-1061.	2.9	35
56	Partitioning of the Maize Epigenome by the Number of Methyl Groups on Histone H3 Lysines 9 and 27. Genetics, 2006, 173, 1571-1583.	2.9	89
57	The Maize Ab10 Meiotic Drive System Maps to Supernumerary Sequences in a Large Complex Haplotype. Genetics, 2006, 174, 145-154.	2.9	34
58	Molecular and Functional Dissection of the Maize B Chromosome Centromere. Plant Cell, 2005, 17, 1412-1423.	6.6	110
59	Phosphoserines on Maize CENTROMERIC HISTONE H3 and Histone H3 Demarcate the Centromere and Pericentromere during Chromosome Segregation. Plant Cell, 2005, 17, 572-583.	6.6	77
60	Centromere renewal and replacement in the plant kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11573-11574.	7.1	21
61	Maize Centromeres: Organization and Functional Adaptation in the Genetic Background of Oat. Plant Cell, 2004, 16, 571-581.	6.6	241
62	Plant neocentromeres: fast, focused, and driven. Chromosome Research, 2004, 12, 655-669.	2.2	65
63	A standardized kinesin nomenclature. Journal of Cell Biology, 2004, 167, 19-22.	5.2	662
64	The meiotic drive system on maize abnormal chromosome 10 contains few essential genes. Genetica, 2003, 117, 67-76.	1.1	19
65	A molecular view of plant centromeres. Trends in Plant Science, 2003, 8, 570-575.	8.8	300
66	RNA Interference, Transposons, and the Centromere. Plant Cell, 2003, 15, 297-301.	6.6	64
67	Chromatin Immunoprecipitation Reveals That the 180-bp Satellite Repeat Is the Key Functional DNA Element of <i>Arabidopsis thaliana</i>	2.9	254
68	Four Loci on Abnormal Chromosome 10 Contribute to Meiotic Drive in Maize. Genetics, 2003, 164, 699-709.	2.9	32
69	Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3. Plant Cell, 2002, 14, 2825-2836.	6.6	354
70	Independently Regulated Neocentromere Activity of Two Classes of Tandem Repeat Arrays. Plant Cell, 2002, 14, 407-420.	6.6	71
71	Maximum Likelihood Methods Reveal Conservation of Function Among Closely Related Kinesin Families. Journal of Molecular Evolution, 2002, 54, 42-53.	1.8	64
72	Dyneins Have Run Their Course in Plant Lineage. Traffic, 2001, 2, 362-363.	2.7	100

#	Article	IF	CITATION
73	Functional Redundancy in the Maize Meiotic Kinetochore. Journal of Cell Biology, 2000, 151, 131-142.	5.2	69
74	A Maize Homolog of Mammalian CENPC Is a Constitutive Component of the Inner Kinetochore. Plant Cell, 1999, 11, 1227-1238.	6.6	122
75	The Maize Homologue of the Cell Cycle Checkpoint Protein MAD2 Reveals Kinetochore Substructure and Contrasting Mitotic and Meiotic Localization Patterns. Journal of Cell Biology, 1999, 145, 425-435.	5.2	125
76	Meiotic Drive of Chromosomal Knobs Reshaped the Maize Genome. Genetics, 1999, 153, 415-426.	2.9	173
77	MEIOTIC CHROMOSOME ORGANIZATION AND SEGREGATION IN PLANTS. Annual Review of Plant Biology, 1998, 49, 371-395.	14.3	127
78	Neocentromere-mediated Chromosome Movement in Maize. Journal of Cell Biology, 1997, 139, 831-840.	5.2	132