
Zuleika Michelini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/881198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, 14, 329.	1.5	11
2	UltraViolet SANitizing System for Sterilization of Ambulances Fleets and for Real-Time Monitoring of Their Sterilization Level. International Journal of Environmental Research and Public Health, 2022, 19, 331.	1.2	8
3	Persistent immunogenicity of integrase defective lentiviral vectors delivering membrane-tethered native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 44.	2.9	2
4	Integrase-Defective Lentiviral Vector Is an Efficient Vaccine Platform for Cancer Immunotherapy. Viruses, 2021, 13, 355.	1.5	17
5	Safety and efficiency modifications of SIV-based integrase-defective lentiviral vectors for immunization. Molecular Therapy - Methods and Clinical Development, 2021, 23, 263-275.	1.8	4
6	Integrase-Defective Lentiviral Vectors for Delivery of Monoclonal Antibodies against Influenza. Viruses, 2020, 12, 1460.	1.5	4
7	Development and Preclinical Evaluation of an Integrase Defective Lentiviral Vector Vaccine Expressing the HIVACAT T Cell Immunogen in Mice. Molecular Therapy - Methods and Clinical Development, 2020, 17, 418-428.	1.8	10
8	IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Communications Biology, 2018, 1, 134.	2.0	26
9	Microbial translocation and T cell activation are modified by directâ€acting antiviral therapy in HCVâ€infected patients. Alimentary Pharmacology and Therapeutics, 2018, 48, 1146-1155.	1.9	14
10	Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens. Frontiers in Immunology, 2018, 9, 171.	2.2	31
11	Reduced Plasma Levels of sCD14 and I-FABP in HIV-infected Patients with Mesalazine-treated Ulcerative Colitis. HIV Clinical Trials, 2016, 17, 49-54.	2.0	10
12	HIVâ€1 DNA dynamics and variations in HIVâ€1 DNA protease and reverse transcriptase sequences in multidrugâ€resistant patients during successful raltegravirâ€based therapy. Journal of Medical Virology, 2016, 88, 2115-2124.	2.5	7
13	Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology, 2015, 12, 4.	0.9	35
14	Optimization of Mucosal Responses after Intramuscular Immunization with Integrase Defective Lentiviral Vector. PLoS ONE, 2014, 9, e107377.	1.1	12
15	Murine Granulocyte–Macrophage Colony-Stimulating Factor Expressed from a Bicistronic Simian Immunodeficiency Virus-Based Integrase-Defective Lentiviral Vector Does Not Enhance T-Cell Responses in Mice. Viral Immunology, 2014, 27, 512-520.	0.6	1
16	Mucosal Immunization with Integrase-Defective Lentiviral Vectors Protects against Influenza Virus Challenge in Mice. PLoS ONE, 2014, 9, e97270.	1.1	17
17	Biocompatible Anionic Polymeric Microspheres as Priming Delivery System for Effetive HIV/AIDS Tat-Based Vaccines. PLoS ONE, 2014, 9, e111360.	1.1	4
18	Effects of Raltegravir on 2-Long Terminal Repeat Circle Junctions in HIV Type 1 Viremic and Aviremic Patients. AIDS Research and Human Retroviruses, 2013, 29, 1365-1369.	0.5	2

Zuleika Michelini

#	Article	IF	CITATIONS
19	Simian immunodeficiency virus-Vpx for improving integrase defective lentiviral vector-based vaccines. Retrovirology, 2012, 9, 69.	0.9	21
20	Simian immunodeficiency virus-Vpx as an adjuvant for integrase defective lentiviral vector-based vaccines. Retrovirology, 2012, 9, .	0.9	1
21	Integrase-defective lentiviral-vector-based vaccine: a new vector for induction of T cell immunity. Expert Opinion on Biological Therapy, 2011, 11, 739-750.	1.4	29
22	Toward Integrase Defective Lentiviral Vectors for Genetic Immunization. Current HIV Research, 2010, 8, 274-281.	0.2	18
23	Evaluation of HIV-1 integrase inhibitors on human primary macrophages using a luciferase-based single-cycle phenotypic assay. Journal of Virological Methods, 2010, 168, 272-276.	1.0	15
24	Transduction of Human Antigen-Presenting Cells with Integrase-Defective Lentiviral Vector Enables Functional Expansion of Primed Antigen-Specific CD8 ⁺ T Cells. Human Gene Therapy, 2010, 21, 1029-1035.	1.4	32
25	Nonintegrating Lentiviral Vector-Based Vaccine Efficiently Induces Functional and Persistent CD8+ T Cell Responses in Mice. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	20
26	Integrase Defective, Nonintegrating Lentiviral Vectors. Methods in Molecular Biology, 2010, 614, 101-110.	0.4	12
27	Containment of Infection in Tat Vaccinated Monkeys After Rechallenge with a Higher Dose of SHIV89.6P _{cy243} . Viral Immunology, 2009, 22, 117-124.	0.6	18
28	Development and use of SIV-based Integrase defective lentiviral vector for immunization. Vaccine, 2009, 27, 4622-4629.	1.7	41
29	<i>Macaca mulatta</i> , <i>fascicularis</i> and <i>nemestrina</i> in AIDS vaccine development. Expert Review of Vaccines, 2008, 7, 1419-1434.	2.0	45
30	Characterization ofα-Defensins Plasma Levels inMacaca Fascicularisand Correlations with Virological Parameters during SHIV89.6Pcy11Experimental Infection. AIDS Research and Human Retroviruses, 2007, 23, 287-296.	0.5	6
31	Successful Immunization with a Single Injection of Non-integrating Lentiviral Vector. Molecular Therapy, 2007, 15, 1716-1723.	3.7	79
32	Evaluation of a Self-Inactivating Lentiviral Vector Expressing Simian Immunodeficiency Virus Gag for Induction of Specific Immune Responsesin Vitroandin Vivo. Viral Immunology, 2006, 19, 690-701.	0.6	35
33	Development of a Human Immunodeficiency Virus Vector-Based, Single-Cycle Assay for Evaluation of Anti-Integrase Compounds. Antimicrobial Agents and Chemotherapy, 2006, 50, 3407-3417.	1.4	18
34	Protective efficacy of a multicomponent vector vaccine in cynomolgus monkeys after intrarectal simian immunodeficiency virus challenge. Journal of General Virology, 2004, 85, 1191-1201.	1.3	63
35	T-cell-mediated protective efficacy of a systemic vaccine approach in cynomolgus monkeys after SIV mucosal challenge. Journal of Medical Primatology, 2004, 33, 251-261.	0.3	19
36	Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine, 2004, 22, 3258-3269.	1.7	70

#	Article	IF	CITATIONS
37	SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. Journal of Medical Primatology, 2003, 29, 193-208.	0.3	51
38	HIV-1 Tat-Based Vaccines: From Basic Science to Clinical Trials. DNA and Cell Biology, 2002, 21, 599-610.	0.9	35
39	Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P). Vaccine, 2001, 19, 2862-2877.	1.7	135
40	Effect of vaccination with recombinant modified vaccinia virus Ankara expressing structural and regulatory genes of SIVmacJ5 on the kinetics of SIV replication in cynomolgus monkeys. Journal of Medical Primatology, 2001, 30, 197-206.	0.3	15
41	Long-Lasting Protection by Live Attenuated Simian Immunodeficiency Virus in Cynomolgus Monkeys: No Detection of Reactivation after Stimulation with a Recall Antigen. Virology, 1999, 256, 291-302.	1.1	25