Dengfeng Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8811716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a new chlorin photosensitizer for photodynamic therapy against colon cancer. Materials Chemistry Frontiers, 2022, 6, 1129-1136.	5.9	2
2	Delivering Singlet Oxygen in Dark Condition With an Anthracene-Functionalized Semiconducting Compound for Enhanced Phototheranostics. Frontiers in Bioengineering and Biotechnology, 2022, 10, 781766.	4.1	4
3	A heavy atom free semiconducting polymer with high singlet oxygen quantum yield for photodynamic and photothermal synergistic therapy. Materials and Design, 2021, 197, 109263.	7.0	10
4	Designing a lysosome targeting nanomedicine for pH-triggered enhanced phototheranostics. Materials Chemistry Frontiers, 2021, 5, 2694-2701.	5.9	9
5	Synthesis and anticancer property of an octanuclear Mn(III) compound based on pyrazole bifunctional ligand. Journal of Coordination Chemistry, 2020, 73, 1806-1816.	2.2	2
6	Two Ru(II) compounds with aggregation induced emission as promising photosensitizers for photodynamic therapy. Journal of Inorganic Biochemistry, 2020, 212, 111233.	3.5	11
7	Boosting type I process of Ru(II) compounds by changing tetrazole ligand for enhanced photodynamic therapy against lung cancer. Journal of Inorganic Biochemistry, 2020, 212, 111236.	3.5	10
8	Synthesis and inÂvitro anticancer properties of a new La(III) coordination polymer. Journal of Coordination Chemistry, 2020, 73, 1223-1231.	2.2	1
9	Two photoactive Ru (II) compounds based on tetrazole ligands for photodynamic therapy. Journal of Inorganic Biochemistry, 2020, 210, 111127.	3.5	15
10	Two luminescent cadmium(II) coordination compounds based on tetrazole–carboxylates. Journal of the Iranian Chemical Society, 2020, 17, 2981-2986.	2.2	1
11	Naturally available hypericin undergoes electron transfer for type I photodynamic and photothermal synergistic therapy. Biomaterials Science, 2020, 8, 2481-2487.	5.4	14
12	Synthesis and anticancer property of three new Ca (II) compounds derived from tetrazole carboxylate ligands. Inorganica Chimica Acta, 2020, 509, 119659.	2.4	11
13	Dimerization of heavy atom free tetraphenylethylene with aggregation induced emission for boosting photodynamic therapy. New Journal of Chemistry, 2020, 44, 7029-7034.	2.8	4
14	A heavy atom-free copolymer for light triggered photodynamic and photothermal therapy of human prostate cancer cells. New Journal of Chemistry, 2019, 43, 13670-13674.	2.8	3
15	Photochemical property of two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole for cancer phototherapy by changing auxiliary ligand. Journal of Inorganic Biochemistry, 2019, 193, 124-129.	3.5	24
16	Heavy atom free 1,1,4,4-tetraphenylbuta-1,3-diene with aggregation induced emission for photodynamic cancer therapy. New Journal of Chemistry, 2019, 43, 9183-9187.	2.8	8
17	Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy. Materials Chemistry Frontiers, 2019, 3, 1123-1127.	5.9	37
18	Synthesis and Anticancer Mechanism of a Cu(II) Compound Based on 5-Aminotetrazole-1-acetic Acid Against Hepatocellular Carcinoma Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2819-2824.	3.7	1

DENGFENG ZOU

#	Article	IF	CITATIONS
19	(2-(4-Bromophenyl)ethene-1,1,2-triyl)tribenzene with aggregation induced emission for ablation of HeLa cells. Materials Chemistry Frontiers, 2018, 2, 1842-1846.	5.9	38
20	Influence of Polyphenol-plasma Protein Interaction on the Antioxidant Properties of Polyphenols. Current Drug Metabolism, 2013, 14, 451-455.	1.2	12
21	A tri-component semiconducting polymer with ultrahigh photothermal conversion efficiency as a biodegradable photosensitizer for phototheranostics. Materials Chemistry Frontiers, 0, , .	5.9	1