List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/881152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2019, 184, 436-447.	4.4	173
2	Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion, kinetic, thermodynamic and emission analyses. Bioresource Technology, 2018, 266, 389-397.	4.8	161
3	Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses. Energy Conversion and Management, 2020, 207, 112552.	4.4	150
4	Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks. Applied Energy, 2018, 212, 786-795.	5.1	132
5	TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic, thermodynamic, and machine-learning models. Energy Conversion and Management, 2019, 195, 346-359.	4.4	124
6	Co-pyrolytic mechanisms, kinetics, emissions and products of biomass and sewage sludge in N2, CO2 and mixed atmospheres. Chemical Engineering Journal, 2020, 397, 125372.	6.6	103
7	Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresource Technology, 2018, 247, 217-225.	4.8	92
8	Pyrolysis dynamics of two medical plastic wastes: Drivers, behaviors, evolved gases, reaction mechanisms, and pathways. Journal of Hazardous Materials, 2021, 402, 123472.	6.5	92
9	Co-combustion of textile dyeing sludge with cattle manure: Assessment of thermal behavior, gaseous products, and ash characteristics. Journal of Cleaner Production, 2020, 253, 119950.	4.6	91
10	Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires. Journal of Hazardous Materials, 2021, 402, 123516.	6.5	90
11	Combustion behaviors of three bamboo residues: Gas emission, kinetic, reaction mechanism and optimization patterns. Journal of Cleaner Production, 2019, 235, 549-561.	4.6	85
12	Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresource Technology, 2018, 250, 230-238.	4.8	80
13	Thermal degradations and processes of waste tea and tea leaves via TG-FTIR: Combustion performances, kinetics, thermodynamics, products and optimization. Bioresource Technology, 2018, 268, 715-725.	4.8	75
14	Comparative (co-)pyrolytic performances and by-products of textile dyeing sludge and cattle manure: Deeper insights from Py-GC/MS, TG-FTIR, 2D-COS and PCA analyses. Journal of Hazardous Materials, 2021, 401, 123276.	6.5	70
15	Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics. Bioresource Technology, 2018, 255, 88-95.	4.8	69
16	Combustions of torrefaction-pretreated bamboo forest residues: Physicochemical properties, evolved gases, and kinetic mechanisms. Bioresource Technology, 2020, 304, 122960.	4.8	69
17	Combustion behaviors of pileus and stipe parts of Lentinus edodes using thermogravimetric-mass spectrometry and Fourier transform infrared spectroscopy analyses: Thermal conversion, kinetic, thermodynamic, gas emission and optimization analyses. Bioresource Technology, 2019, 288, 121481.	4.8	67
18	Interaction effects of chlorine and phosphorus on thermochemical behaviors of heavy metals during incineration of sulfur-rich textile dyeing sludge. Chemical Engineering Journal, 2018, 351, 897-911.	6.6	65

#	Article	IF	CITATIONS
19	Thermal characteristics, kinetics, gas emissions and thermodynamic simulations of (co-)combustions of textile dyeing sludge and waste tea. Journal of Cleaner Production, 2019, 239, 118113.	4.6	65
20	Synergistic effects, gaseous products, and evolutions of NOx precursors during (co-)pyrolysis of textile dyeing sludge and bamboo residues. Journal of Hazardous Materials, 2021, 401, 123331.	6.5	65
21	Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation. Bioresource Technology, 2016, 216, 280-286.	4.8	64
22	(Co-)combustion behaviors and products of spent potlining and textile dyeing sludge. Journal of Cleaner Production, 2019, 224, 384-395.	4.6	61
23	Kinetics, thermodynamics, gas evolution and empirical optimization of cattle manure combustion in air and oxy-fuel atmospheres. Applied Thermal Engineering, 2019, 149, 119-131.	3.0	60
24	Catalytic effects of CaO, Al2O3, Fe2O3, and red mud on Pteris vittata combustion: Emission, kinetic and ash conversion patterns. Journal of Cleaner Production, 2020, 252, 119646.	4.6	60
25	Thermogravimetric analysis of (co-)combustion of oily sludge and litchi peels: combustion characterization, interactions and kinetics. Thermochimica Acta, 2018, 667, 207-218.	1.2	59
26	Thermal conversion behaviors and products of spent mushroom substrate in CO2 and N2 atmospheres: Kinetic, thermodynamic, TG and Py-GC/MS analyses. Journal of Analytical and Applied Pyrolysis, 2019, 139, 177-186.	2.6	55
27	Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse. Applied Thermal Engineering, 2018, 131, 874-883.	3.0	50
28	Kinetics, thermodynamics, gas evolution and empirical optimization of (co-)combustion performances of spent mushroom substrate and textile dyeing sludge. Bioresource Technology, 2019, 280, 313-324.	4.8	50
29	Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS. Renewable Energy, 2020, 148, 1074-1093.	4.3	50
30	Combustion behaviors of Pteris vittata using thermogravimetric, kinetic, emission and optimization analyses. Journal of Cleaner Production, 2019, 237, 117772.	4.6	49
31	Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres. Renewable Energy, 2019, 141, 814-827.	4.3	48
32	Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends. Renewable Energy, 2018, 122, 55-64.	4.3	46
33	CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: Dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms. Journal of Hazardous Materials, 2020, 400, 123190.	6.5	45
34	Pyrolytic behaviors, kinetics, decomposition mechanisms, product distributions and joint optimization of Lentinus edodes stipe. Energy Conversion and Management, 2020, 213, 112858.	4.4	43
35	Thermogravimetric and mass-spectrometric analyses of combustion of spent potlining under N2/O2 and CO2/O2 atmospheres. Waste Management, 2019, 87, 237-249.	3.7	37
36	(Co-)combustion of additives, water hyacinth and sewage sludge: Thermogravimetric, kinetic, gas and thermodynamic modeling analyses. Waste Management, 2018, 81, 211-219.	3.7	36

#	Article	IF	CITATIONS
37	Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and lignite coal using TGA, artificial neural network modeling and likelihood method. Bioresource Technology, 2019, 287, 121461.	4.8	36
38	(Co-)pyrolytic performances and by-products of textile dyeing sludge and spent mushroom substrate. Journal of Cleaner Production, 2020, 261, 121195.	4.6	36
39	The mixture of sewage sludge and biomass waste as solid biofuels: Process characteristic and environmental implication. Renewable Energy, 2019, 139, 707-717.	4.3	31
40	Probabilistic uncertainty analysis based on Monte Carlo simulations of co-combustion of hazelnut hull and coal blends: Data-driven modeling and response surface optimization. Bioresource Technology, 2017, 225, 106-112.	4.8	30
41	Uncertainty estimation by Bayesian approach in thermochemical conversion of walnut hull and lignite coal blends. Bioresource Technology, 2017, 232, 87-92.	4.8	26
42	Response surface optimization, modeling and uncertainty analysis of mass loss response of co-combustion of sewage sludge and water hyacinth. Applied Thermal Engineering, 2017, 125, 328-335.	3.0	26
43	Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates. Bioresource Technology, 2019, 277, 104-116.	4.8	26
44	Catalytic combustion performances, kinetics, reaction mechanisms and gas emissions of Lentinus edodes. Bioresource Technology, 2020, 300, 122630.	4.8	26
45	Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models. Renewable Energy, 2020, 151, 463-474.	4.3	25
46	Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: Bioenergy, emission and ash deposition improvements. Journal of Cleaner Production, 2020, 270, 122418.	4.6	25
47	Utilization of apricot seed in (co-)combustion of lignite coal blends: Numeric optimization, empirical modeling and uncertainty estimation. Fuel, 2018, 216, 190-198.	3.4	24
48	Combustion parameters, evolved gases, reaction mechanisms, and ash mineral behaviors of durian shells: A comprehensive characterization and joint-optimization. Bioresource Technology, 2020, 314, 123689.	4.8	22
49	Thermal behaviors of fluorine during (co-)incinerations of spent potlining and red mud: Transformation, retention, leaching and thermodynamic modeling analyses. Chemosphere, 2020, 249, 126204.	4.2	22
50	Reaction mechanisms and product patterns of Pteris vittata pyrolysis for cleaner energy. Renewable Energy, 2021, 167, 600-612.	4.3	16
51	Modeling of decolorization of synthetic reactive dyestuff solutions with response surface methodology by a rapid and efficient process of ultrasound-assisted ozone oxidation. Desalination and Water Treatment, 2016, 57, 14973-14985.	1.0	14
52	Thermal behaviors, combustion mechanisms, evolved gasses, and ash analysis of spent potlining for a hazardous waste management. Journal of Environmental Sciences, 2021, 107, 124-137.	3.2	14
53	Prediction of Photocatalytic Degradation and Mineralization Efficiencies of Basic Blue 3 Using \$\${{m TiO}_{2}}\$\$ TiO 2 by Nonlinear Modeling Based on Box–Behnken Design. Arabian Journal for Science and Engineering, 2016, 41, 2631-2646.	1.1	13
54	Removal, potential reaction pathways, and overall cost analysis of various pollution parameters and toxic odor compounds from the effluents of turkey processing plant using TiO2–assisted UV/O3 process. Journal of Environmental Management, 2019, 248, 109298.	3.8	11

#	Article	IF	CITATIONS
55	Removal of Yellow F3R, Di Maria Brilliant Blue R and Reactive Brilliant Red M-3BE from Aqueous Solutions by a Rapid and Efficient Ultrasound-Assisted Process with a Novel Biosorbent of Cottonseed Cake: Statistical Modeling, Kinetic and Thermodynamic Studies. Arabian Journal for Science and Engineering, 2015, 40, 2153-2168.	1.1	10
56	Thermodynamic behaviors of Cu in interaction with chlorine, sulfur, phosphorus and minerals during sewage sludge co-incineration. Chinese Journal of Chemical Engineering, 2018, 26, 1160-1170.	1.7	9
57	Parametric assessment of stochastic variability in co-combustion of textile dyeing sludge and shaddock peel. Waste Management, 2019, 96, 128-135.	3.7	9
58	Arsenic Partitioning Behavior During Sludge Co-combustion: Thermodynamic Equilibrium Simulation. Waste and Biomass Valorization, 2019, 10, 2297-2307.	1.8	9
59	Data-driven nonlinear modeling studies on removal of Acid Yellow 59 using Si-doped multi-walled carbon nanotubes. International Journal of Environmental Science and Technology, 2017, 14, 2215-2228.	1.8	8
60	Thermochemical behaviorsof textile dying sludge, paper mill sludge, and their blends during (co-)combustion. Thermochimica Acta, 2017, 655, 101-105.	1.2	7
61	Thermodynamic equilibrium predictions of zinc volatilization, migration, and transformation during sludge coâ€incineration. Water Environment Research, 2019, 91, 208-221.	1.3	5
62	Thermodynamic Equilibrium Simulations of ThalliumÂDistributions in Interactions with Chlorine, Sulfur, Phosphorus, and Minerals During Sludge Co-combustion. Waste and Biomass Valorization, 2020, 11, 1251-1259.	1.8	3
63	Modeling Efficiency of Dehydrated Sunflower Seed Cake as a Novel Biosorbent to Remove a Toxic Azo Dye. Chemical Engineering Communications, 2015, , 151007222219007.	1.5	2
64	Ultrasound–assisted adsorption of toxic dyes by cottonseed cake: artificial neural networks, regression models and response surface optimization. Global Nest Journal, 2018, 20, 14-24.	0.3	2
65	Modeling Ultrasound-Assisted Decolorization Efficiency of Reactive Red 195 Using Soybean Cake. Asian Journal of Chemistry, 2015, 27, 4541-4548.	0.1	1
66	Fındık kabukları ile farklı model boyaların gideriminin kinetik ve termodinamik incelemesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	0.3	1
67	Removal of COD and TOC from various model textile dyes by ozonation: Box-Behnken approach. Pamukkale University Journal of Engineering Sciences, 2019, 25, 871-877.	0.2	0