Paul L Burn

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8811026/paul-l-burn-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 413
 29,685
 68
 163

 papers
 citations
 h-index
 g-index

 443
 31,575
 8.1
 6.92

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
413	Investigating the donor:acceptor ratio in thermally activated delayed fluorescence light-emitting macromolecules. <i>Organic Electronics</i> , 2022 , 105, 106500	3.5	1
412	Understanding the performance differences between solution and vacuum deposited OLEDs: A computational approach. <i>Journal of Chemical Physics</i> , 2022 , 156, 214703	3.9	0
411	Light-emitting dendrimer:exciplex host-based solution-processed white organic light-emitting diodes. <i>Organic Electronics</i> , 2021 , 100, 106389	3.5	2
410	Effect of dendron structure on the luminescent and charge transporting properties of solution processed dendrimer-based OLEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 16033-16043	7.1	1
409	Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. <i>Communications Chemistry</i> , 2021 , 4,	6.3	5
408	Unraveling exciton processes in Ir(ppy):CBP OLED films upon photoexcitation. <i>Journal of Chemical Physics</i> , 2021 , 154, 164101	3.9	6
407	Diffusion in Organic Film Stacks Containing Solution-Processed Phosphorescent Poly(dendrimer) Dopants. <i>ACS Applied Materials & Acs Applied </i>	9.5	1
406	Measuring the Magnetic Field Amplitude of rf Radiation by the Quasistatic Magnetic Field Effect in Organic Light-Emitting Diodes. <i>Physical Review Applied</i> , 2021 , 15,	4.3	3
405	Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. <i>Carbon</i> , 2021 , 171, 350-358	10.4	12
404	Preserving the work function of Ultra-Violet-ozone treated indium tin oxide by triarylamine-based small molecule modification for solution-processed organic light-emitting diodes with increased external quantum efficiency. <i>Thin Solid Films</i> , 2021 , 718, 138475	2.2	2
403	Floquet spin states in OLEDs. <i>Nature Communications</i> , 2021 , 12, 465	17.4	6
402	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. <i>Nature Communications</i> , 2021 , 12, 52	17.4	40
401	Balanced Hole and Electron Transport in Ir(ppy)3:TCTA Blends. ACS Photonics, 2021, 8, 2425-2430	6.3	3
400	Effect of dendrimer surface groups on the properties of phosphorescent emissive films. <i>Organic Electronics</i> , 2021 , 99, 106321	3.5	1
399	A solution-processed bis-tridentate iridium(III) complex-cored dendrimer for green OLEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 9545-9554	7.1	2
398	Annealing-enhanced birefringence and aggregation in MEH-PPV: A spectroscopic ellipsometry study. <i>Journal of Applied Physics</i> , 2020 , 127, 093101	2.5	2
397	Conjugated Polymer Light-Emitting Diodes 2020 , 77-98		5

(2020-2020)

396	Perdeuterated Conjugated Polymers for Ultralow-Frequency Magnetic Resonance of OLEDs. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9388-9392	16.4	7
395	Perdeuteration of poly[2-methoxy-5-(2?-ethylhexyloxy)-1,4-phenylenevinylene] (d-MEH-PPV): control of microscopic charge-carrier spinBpin coupling and of magnetic-field effects in optoelectronic devices. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2764-2771	7.1	9
394	High-Sensitivity Poly(dendrimer)-Based Sensors for the Detection of Explosives and Taggant Vapors. <i>Macromolecules</i> , 2020 , 53, 1652-1664	5.5	11
393	Properties of PDMS-divinylbenzene based pre-concentrators for nitroaromatic vapors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16967-16973	7.1	1
392	Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. <i>Advanced Materials</i> , 2020 , 32, e1905785	24	28
391	A red emissive poly(dendrimer) for solution processed organic light-emitting diodes. <i>Organic Electronics</i> , 2020 , 78, 105594	3.5	5
390	Revealing the Interplay between Charge Transport, Luminescence Efficiency, and Morphology in Organic Light-Emitting Diode Blends. <i>Advanced Functional Materials</i> , 2020 , 30, 1907942	15.6	19
389	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 889-899	6.1	7
388	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. <i>ACS Applied Materials & Description of Color Services</i> , 2020, 12, 37647-	-37656	i ¹⁶
387	A three-dimensional multi-chromophore naphthalene diimide acceptor for polymer bulk heterojunction solar cells. <i>Synthetic Metals</i> , 2020 , 268, 116505	3.6	1
386	Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. <i>Macromolecules</i> , 2020 , 53, 10375-10385	5.5	9
385	Pyrrolo[3,2-]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small Molecular Acceptors for Organic Solar Cells. <i>Molecules</i> , 2020 , 25,	4.8	2
384	White Dendrimer Organic Light Emitting Diodes: Exciton Formation and Transfer. <i>Advanced Optical Materials</i> , 2020 , 8, 2001289	8.1	4
383	Dicyanovinyl-based fluorescent sensors for dual mechanism amine sensing. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13723-13732	7.1	13
382	Luminescent poly(dendrimer)s for the detection of explosives. <i>Materials Advances</i> , 2020 , 1, 837-844	3.3	4
381	Evolution and Morphology of Thin Films Formed by Solvent Evaporation: An Organic Semiconductor Case Study. <i>ACS Applied Materials & Semiconductor Case Study</i> . <i>ACS Applied Materials & Semiconductor Case Study</i> . 12, 40548-40557	9.5	4
380	Determining the Correlation between Excited State Dynamics and Donor and Acceptor Structure in Nonfullerene Acceptors. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 17851-17863	3.8	0
379	Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance. <i>Organic Electronics</i> , 2020 , 76, 105480	3.5	5

378	Hole-Transporting Poly(dendrimer)s as Electron Donors for Low Donor Organic Solar Cells with Efficient Charge Transport. <i>Macromolecules</i> , 2020 , 53, 2902-2911	5.5	3
377	Charge transport in an organic light emitting diode material measured using metal-insulator-semiconductor charge extraction by linearly increasing voltage with parameter variation. <i>Journal of Applied Physics</i> , 2019 , 126, 035501	2.5	9
376	Flexible ITO-Free Organic Photovoltaics on Ultra-Thin Flexible Glass Substrates with High Efficiency and Improved Stability. <i>Solar Rrl</i> , 2019 , 3, 1800286	7.1	3
375	The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1901090	24	36
374	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. <i>ACS Nano</i> , 2019 , 13, 5513-5522	16.7	18
373	Calculating transition dipole moments of phosphorescent emitters for efficient organic light-emitting diodes. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 9740-9746	3.6	6
372	Graphene-Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. <i>Solar Rrl</i> , 2019 , 3, 1900042	7.1	7
371	Understanding charge transport in Ir(ppy):CBP OLED films. <i>Journal of Chemical Physics</i> , 2019 , 150, 0941	19 9	16
370	Sensitive and fast fluorescence-based indirect sensing of TATP RSC Advances, 2019, 9, 7032-7042	3.7	2
369	Organic light-emitting diodes comprising highly luminescent red-emitting dendrimers with carbazole-based dendrons. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4681-4691	7.1	11
368	9,9?-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells. <i>Synthetic Metals</i> , 2019 , 250, 79-87	3.6	
367	Effect of Surface Roughness on Light-Absorber Orientation in an Organic Photovoltaic Film. <i>Chemistry of Materials</i> , 2019 , 31, 6918-6924	9.6	2
366	Elucidating the effects of guest-host energy level alignment on charge transport in phosphorescent OLEDs. <i>Applied Physics Letters</i> , 2019 , 115, 263301	3.4	8
365	Solid-State Fluorescence-based Sensing of TATP via Hydrogen Peroxide Detection. <i>ACS Sensors</i> , 2019 , 4, 134-142	9.2	18
364	Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors. <i>Advanced Energy Materials</i> , 2018 , 8, 1702941	21.8	34
363	Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films. Organic Electronics, 2018, 55, 177-186	3.5	2
362	Morphology of OLED Film Stacks Containing Solution-Processed Phosphorescent Dendrimers. <i>ACS Applied Materials & Dendrimers</i> , 2018 , 10, 3848-3855	9.5	4
361	Recombination Losses Above and Below the Transport Percolation Threshold in Bulk Heterojunction Organic Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1703339	21.8	13

(2017-2018)

360	Influence of Dopant Concentration and Steric Bulk on Interlayer Diffusion in OLEDs. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1700872	4.6	6	
359	Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. <i>Nature Energy</i> , 2018 , 3, 847-854	62.3	476	
358	Morphology of a Bulk Heterojunction Photovoltaic Cell with Low Donor Concentration. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 32413-32419	9.5	16	
357	An external quantum efficiency of >20% from solution-processed poly(dendrimer) organic light-emitting diodes. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	23	
356	Twisted dendrons for highly luminescent green emissive phosphorescent dendrimers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10315-10326	7.1	12	
355	Loss Mechanisms in Fullerene-Based Low-Donor Content Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20611-20618	3.8	8	
354	Effect of precursor macromonomer molecular weight on poly(dimethylsiloxane) film morphology and nitroaromatic vapor sorption. <i>Sensors and Actuators B: Chemical</i> , 2018 , 270, 283-290	8.5	1	
353	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. <i>ACS Applied Materials & Description (Materials & Description of Solution Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Description (Materials & Description of Solution Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Description (Materials & Description of Solution Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Description (Materials & Description of Solution Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Description (Materials & Description of Solution Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Description (Materials & Description of Solution Processed Hybrid Organohalide Perovskite Solar Cells.)</i>	9.5	62	
352	Application of an A-A'-A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells. <i>ACS Applied Materials & Description</i> (2008) 10, 24046-24054	9.5	12	
351	A thiocarbonyl-containing small molecule for optoelectronics. <i>RSC Advances</i> , 2017 , 7, 10316-10322	3.7	8	
350	Synthesis of grafted poly(p-phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and photoluminescence materials. <i>European Polymer Journal</i> , 2017 , 89, 263-271	5.2	8	
349	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8402-8406	16.4	33	
348	A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description (Materials & Description of Materials & Description of Materi</i>	9.5	7	
347	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie</i> , 2017 , 129, 8522-8526	3.6	1	
346	Dependence of Organic Interlayer Diffusion on Glass-Transition Temperature in OLEDs. <i>ACS Applied Materials & Description of Materials & Description of Communication on Glass-Transition Temperature in OLEDs. ACS Applied Materials & Description of Communication </i>	9.5	28	
345	Effect of n-propyl substituents on the emission properties of blue phosphorescent iridium(iii) complexes. <i>Journal of Chemical Physics</i> , 2017 , 146, 174305	3.9	2	
344	Considerations for Upscaling of Organohalide Perovskite Solar Cells. <i>Advanced Optical Materials</i> , 2017 , 5, 1600819	8.1	14	
343	The structural impact of water sorption on device-quality melanin thin films. <i>Soft Matter</i> , 2017 , 13, 395	4-3 .6 65	15	

342	Engineering dielectric constants in organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3736-3747	7.1	35
341	Host-Free Blue Phosphorescent Dendrimer Organic Light-Emitting Field-Effect Transistors and Equivalent Light-Emitting Diodes: A Comparative Study. <i>ACS Photonics</i> , 2017 , 4, 754-760	6.3	26
340	Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells. <i>ACS Applied Materials & Description</i> (2017), 9, 42986-42995	9.5	13
339	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22542-22558	13	55
338	Charge Generation in Non-Fullerene DonorAcceptor Blends for Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 18412-18422	3.8	5
337	Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29714-29730	3.6	32
336	The Molecular Origin of Anisotropic Emission in an Organic Light-Emitting Diode. <i>Nano Letters</i> , 2017 , 17, 6464-6468	11.5	30
335	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. <i>Organic Electronics</i> , 2017 , 50, 339-346	3.5	2
334	Electric Field and Mobility Dependent First-Order Recombination Losses in Organic Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601379	21.8	24
333	Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 727-733	8.5	11
332	Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoO as an interfacial layer. <i>Nanoscale</i> , 2017 , 9, 251-257	7.7	24
331	On the unipolarity of charge transport in methanofullerene diodes. <i>Npj Flexible Electronics</i> , 2017 , 1,	10.7	13
330	Efficient, monolithic large area organohalide perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13830-13836	13	41
329	Orange-Red-Light-Emitting Field-Effect Transistors Based on Phosphorescent Pt(II) Complexes with Area Emission. <i>Advanced Optical Materials</i> , 2016 , 4, 1867-1874	8.1	14
328	Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals. <i>Laser and Photonics Reviews</i> , 2016 , 10, 1047-1053	8.3	46
327	Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter. <i>Chemical Science</i> , 2016 , 7, 6974-6980	9.4	27
326	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. <i>ChemPhysChem</i> , 2016 , 17, 3345-3345	3.2	
325	Slower carriers limit charge generation in organic semiconductor light-harvesting systems. <i>Nature Communications</i> , 2016 , 7, 11944	17.4	55

(2015-2016)

324	Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. <i>Macromolecules</i> , 2016 , 49, 4404-4415	5.5	21
323	Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor. <i>Chemical Reviews</i> , 2016 , 116, 12920-12955	68.1	166
322	Organic Photodiodes: The Future of Full Color Detection and Image Sensing. <i>Advanced Materials</i> , 2016 , 28, 4766-802	24	447
321	Exact exchange and the density functional theory of metal-to-ligand charge-transfer in fac-Ir(ppy)3. <i>Organic Electronics</i> , 2016 , 33, 110-115	3.5	11
320	The synthesis and ring-opening metathesis polymerization of glycomonomers. <i>RSC Advances</i> , 2016 , 6, 31256-31264	3.7	4
319	Organohalide Perovskites for Solar Energy Conversion. <i>Accounts of Chemical Research</i> , 2016 , 49, 545-53	24.3	122
318	Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(iii) complexes in thin films on dielectric surfaces. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3575-80	3.6	4
317	An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500420	4.6	18
316	Diffusion at Interfaces in OLEDs Containing a Doped Phosphorescent Emissive Layer. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600184	4.6	13
315	Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2640-6	6.4	12
314	Thiophene dendrimer-based low donor content solar cells. <i>Applied Physics Letters</i> , 2016 , 109, 103302	3.4	10
313	AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes. <i>Journal of Applied Physics</i> , 2016 , 119, 245501	2.5	4
312	Bond Fission and Non-Radiative Decay in Iridium(III) Complexes. <i>Inorganic Chemistry</i> , 2016 , 55, 5266-73	5.1	41
311	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. <i>ChemPhysChem</i> , 2016 , 17, 3350-3353	3.2	12
310	Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 25861-25868	3.6	5
309	Highly processable, rubbery poly(n-butyl acrylate) grafted poly(phenylene vinylene)s. <i>European Polymer Journal</i> , 2016 , 84, 355-365	5.2	12
308	Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. <i>Nature Communications</i> , 2015 , 6, 6343	17.4	316
307	Charge transport and recombination in heterostructure organic light emitting transistors. <i>Organic Electronics</i> , 2015 , 25, 37-43	3.5	7

306	Dielectric constant enhancement of non-fullerene acceptors via side-chain modification. <i>Chemical Communications</i> , 2015 , 51, 14115-8	5.8	41
305	Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors. <i>Scientific Reports</i> , 2015 , 5, 8818	4.9	31
304	Photocarrier drift distance in organic solar cells and photodetectors. <i>Scientific Reports</i> , 2015 , 5, 9949	4.9	74
303	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. <i>Science and Technology of Advanced Materials</i> , 2015 , 16, 025002	7.1	23
302	Room-temperature tilted-target sputtering deposition of highly transparent and low sheet resistance Al doped ZnO electrodes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5322-5331	7.1	15
301	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10799-10812	7.1	17
300	Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. <i>Nature Communications</i> , 2015 , 6, 8240	17.4	60
299	Analysis of the emitting states of an Ir(III) complex with strong blue emission. <i>Chemical Physics Letters</i> , 2015 , 641, 62-67	2.5	3
298	Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3. <i>Inorganic Chemistry</i> , 2015 , 54, 10457-61	5.1	14
297	Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. <i>Chemical Communications</i> , 2015 , 51, 17406-9	5.8	8
296	Quantitative real time sensing reveals enhanced sensitivity of polar dendrimer thin films for plastic explosive taggants. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9412-9424	7.1	2
295	Filterless narrowband visible photodetectors. <i>Nature Photonics</i> , 2015 , 9, 687-694	33.9	325
294	The spin-Dicke effect in OLED magnetoresistance. <i>Nature Physics</i> , 2015 , 11, 910-914	16.2	33
293	Clustering of High Molecular Weight PCDTBT in Bulk-Heterojunction Casting Solutions. Macromolecules, 2015 , 48, 8331-8336	5.5	11
292	Electro-Optics of Conventional and Inverted Thick Junction Organic Solar Cells. <i>ACS Photonics</i> , 2015 , 2, 1745-1754	6.3	33
291	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26866-26874	3.8	24
290	Tuning the optoelectronic properties of nonfullerene electron acceptors. <i>ChemPhysChem</i> , 2015 , 16, 12	95.304	
289	Electro-optics of perovskite solar cells. <i>Nature Photonics</i> , 2015 , 9, 106-112	33.9	1260

(2014-2015)

288	Optimized multilayer indium-free electrodes for organic photovoltaics. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 348-355	1.6	8
287	Time-independent charge carrier mobility in a model polymer:fullerene organic solar cell. <i>Organic Electronics</i> , 2015 , 16, 205-211	3.5	10
286	Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities. <i>Advanced Energy Materials</i> , 2015 , 5, 1401221	21.8	75
285	High-Performance, Solution-Processed Non-polymeric Organic Photodiodes. <i>Advanced Optical Materials</i> , 2015 , 3, 50-56	8.1	35
284	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1771, 33-44		
283	Hybrid Area-Emitting Transistors: Solution Processable and with High Aperture Ratios. <i>Advanced Materials</i> , 2015 , 27, 6677-82	24	33
282	Bulk heterojunction thickness uniformity ha limiting factor in large area organic solar cells?. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2246-2254	1.6	16
281	Pathway to high throughput, low cost indium-free transparent electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13892-13899	13	13
280	Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection. <i>Sensors and Actuators B: Chemical</i> , 2015 , 210, 550-557	8.5	19
279	Efficient and bright polymer light emitting field effect transistors. <i>Organic Electronics</i> , 2015 , 17, 371-37	763.5	23
279 278	Efficient and bright polymer light emitting field effect transistors. <i>Organic Electronics</i> , 2015 , 17, 371-37. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. <i>Advanced Materials</i> , 2015 , 27, 2060-4	763.5 24	23
	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging.		
278	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Advanced Materials, 2015, 27, 2060-4 The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells.	24	233
278 277	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Advanced Materials, 2015, 27, 2060-4 The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. Scientific Reports, 2014, 4, 5695 Determination of fullerene scattering length density: a critical parameter for understanding the	24 4.9	233 47
278 277 276	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. <i>Advanced Materials</i> , 2015 , 27, 2060-4 The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. <i>Scientific Reports</i> , 2014 , 4, 5695 Determination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices. <i>Langmuir</i> , 2014 , 30, 1410-5 Solution-processed pentathiophene dendrimer based photodetectors for digital cameras. <i>Sensors</i>	24 4.9	233 47 19
278 277 276 275	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Advanced Materials, 2015, 27, 2060-4 The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. Scientific Reports, 2014, 4, 5695 Determination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices. Langmuir, 2014, 30, 1410-5 Solution-processed pentathiophene dendrimer based photodetectors for digital cameras. Sensors and Actuators B: Chemical, 2014, 196, 245-251 Solution structure: defining polymer film morphology and optoelectronic device performance.	24 4.9 4 8.5	233 47 19
278 277 276 275	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. <i>Advanced Materials</i> , 2015 , 27, 2060-4 The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. <i>Scientific Reports</i> , 2014 , 4, 5695 Determination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices. <i>Langmuir</i> , 2014 , 30, 1410-5 Solution-processed pentathiophene dendrimer based photodetectors for digital cameras. <i>Sensors and Actuators B: Chemical</i> , 2014 , 196, 245-251 Solution structure: defining polymer film morphology and optoelectronic device performance. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 71-77	24 4.9 4 8.5	233 47 19 15

270	Advantage of suppressed non-Langevin recombination in low mobility organic solar cells. <i>Applied Physics Letters</i> , 2014 , 105, 013302	3.4	31
269	Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11465-72	16.4	75
268	Time-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerene layers. <i>Langmuir</i> , 2014 , 30, 11474-84	4	31
267	Improved stability of non-ITO stacked electrodes for large area flexible organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 182-190	6.4	17
266	Thick junction broadband organic photodiodes. Laser and Photonics Reviews, 2014, 8, 924-932	8.3	164
265	Worldwide outdoor round robin study of organic photovoltaic devices and modules. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 281-290	6.4	22
264	Organic electronics. Room-temperature coupling between electrical current and nuclear spins in OLEDs. <i>Science</i> , 2014 , 345, 1487-90	33.3	75
263	High-Mobility, Heterostructure Light-Emitting Transistors and Complementary Inverters. <i>ACS Photonics</i> , 2014 , 1, 954-959	6.3	20
262	Narrow band green organic photodiodes for imaging. Organic Electronics, 2014, 15, 2903-2911	3.5	73
261	Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations. <i>ACS Photonics</i> , 2014 , 1, 173-181	6.3	109
260	Free carrier generation in organic photovoltaic bulk heterojunctions of conjugated polymers with molecular acceptors: planar versus spherical acceptors. <i>ChemPhysChem</i> , 2014 , 15, 1539-49	3.2	26
259	All solution-processed, hybrid light emitting field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 6410	- 5 4	62
258	Impact of Acceptor Crystallinity on the Photophysics of Nonfullerene Blends for Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13460-13466	3.8	11
257	Energetic requirements of iridium(III) complex based photosensitisers in photocatalytic hydrogen generation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21577-85	3.6	16
256	High mobility solution-processed hybrid light emitting transistors. <i>Applied Physics Letters</i> , 2014 , 105, 183302	3.4	23
255	Balanced Carrier Mobilities: Not a Necessary Condition for High-Efficiency Thin Organic Solar Cells as Determined by MIS-CELIV. <i>Advanced Energy Materials</i> , 2014 , 4, 1300954	21.8	118
254	ITO-free top emitting organic light emitting diodes with enhanced light out-coupling. <i>Laser and Photonics Reviews</i> , 2014 , 8, 165-171	8.3	31
253	Molecular weight dependent bimolecular recombination in organic solar cells. <i>Journal of Chemical Physics</i> , 2014 , 141, 054903	3.9	18

252	Pentacene/K12 solar cells formed by organic vapor phase deposition. <i>Journal of Photonics for Energy</i> , 2014 , 4, 043092	1.2	
251	Tuning the optoelectronic properties of cyanine and ketocyanine dyes by incorporation of 9,9-di-n-propylfluorenylindolenine. <i>Dyes and Pigments</i> , 2014 , 101, 1-8	4.6	9
250	Measuring internal quantum efficiency to demonstrate hot exciton dissociation. <i>Nature Materials</i> , 2013 , 12, 593	27	34
249	Three-dimensional carbazole-based dendrimers: model structures for studying charge transport in organic semiconductor films. <i>Polymer Chemistry</i> , 2013 , 4, 916-925	4.9	18
248	Photophysics of delocalized excitons in carbazole dendrimers. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 6270-8	2.8	17
247	Detection of explosive analytes using a dendrimer-based field-effect transistor. <i>Organic Electronics</i> , 2013 , 14, 1255-1261	3.5	5
246	Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3532	7.1	57
245	Correlation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2593	7.1	33
244	High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives. Journal of Physical Chemistry C, 2013 , 117, 5328-5337	3.8	31
243	The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9845-53	3.6	26
242	A simple iterative method for the synthesis of $\P(1->6)$ -glucosamine oligosaccharides. Carbohydrate Research, 2013 , 371, 68-76	2.9	12
241	Thin film properties of triphenylamine-cored dendrimers: A molecular approach to control aggregation. <i>Thin Solid Films</i> , 2013 , 548, 190-194	2.2	1
240	Unlocking the full potential of light emitting field-effect transistors by engineering charge injection layers. <i>Organic Electronics</i> , 2013 , 14, 2953-2961	3.5	23
239	Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer. <i>Electrochimica Acta</i> , 2013 , 100, 72-77	6.7	20
238	Doping-Induced Screening of the Built-in-Field in Organic Solar Cells: Effect on Charge Transport and Recombination. <i>Advanced Energy Materials</i> , 2013 , 3, 321-327	21.8	50
237	Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5989	13	23
236	Design protocols in triarylamine cored dendrimer-based explosive sensors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1322-1329	7.1	18
235	A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 54-59	21.8	99

234	Controlling Hierarchy in Solution-processed Polymer Solar Cells Based on Crosslinked P3HT. <i>Advanced Energy Materials</i> , 2013 , 3, 105-112	21.8	54
233	Spectral response tuning using an optical spacer in broad-band organic solar cells. <i>Applied Physics Letters</i> , 2013 , 102, 013302	3.4	8
232	The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor. <i>Applied Physics Letters</i> , 2013 , 102, 243301	3.4	3
231	Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption. <i>Applied Physics Letters</i> , 2013 , 102, 223302	3.4	15
230	In-plane superfluid density and microwave conductivity of the organic superconductor [(BEDT-TTF)2Cu[N(CN)2]Br: Evidence for d-wave pairing and resilient quasiparticles. <i>Physical Review B</i> , 2013 , 88,	3.3	24
229	Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. <i>Advanced Materials</i> , 2013 , 25, 6213-8	24	67
228	Deuteration of molecules for neutron reflectometry on organic light-emitting diode thin films. <i>Tetrahedron Letters</i> , 2012 , 53, 931-935	2	20
227	Charge Transport in a Highly Phosphorescent Iridium(III) Complex-Cored Dendrimer with Double Dendrons. <i>Advanced Functional Materials</i> , 2012 , 22, 157-165	15.6	16
226	Nanostructured, active organic-metal junctions for highly efficient charge generation and extraction in polymer-fullerene solar cells. <i>Advanced Materials</i> , 2012 , 24, 1055-61	24	34
225	Diffusionthe hidden menace in organic optoelectronic devices. <i>Advanced Materials</i> , 2012 , 24, 822-6	24	31
224	Carbazole/iridium dendrimer side-chain phosphorescent copolymers for efficient light emitting devices. <i>New Journal of Chemistry</i> , 2012 , 36, 407-413	3.6	13
223	A new diketopyrrolopyrrole-based co-polymer for ambipolar field-effect transistors and solar cells. <i>Organic Electronics</i> , 2012 , 13, 1981-1988	3.5	19
222	Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. <i>Applied Physics Letters</i> , 2012 , 101, 083306	3.4	39
221	Kinetics of charge transfer processes in organic solar cells: Implications for the design of acceptor molecules. <i>Organic Electronics</i> , 2012 , 13, 2538-2545	3.5	11
220	The Bouble dendron approach to host free phosphorescent poly(dendrimer) OLEDs. <i>Polymer Chemistry</i> , 2012 , 3, 734	4.9	13
219	A flexible n-type organic semiconductor for optoelectronics. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1800-1806		25
218	Poly(dendrimers) with Phosphorescent Iridium(III) Complex-Based Side Chains Prepared via Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2012 , 45, 2963-2971	5.5	29
217	Superconductivity suppression and peak resistivity enhancement for thin crystals of E(BEDT-TTF)2Cu(SCN)2. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 979-984	1.3	5

(2011-2012)

216	Effects of fluorination on iridium(III) complex phosphorescence: magnetic circular dichroism and relativistic time-dependent density functional theory. <i>Inorganic Chemistry</i> , 2012 , 51, 2821-31	5.1	45
215	Fluorescent carbazole dendrimers for the detection of nitroaliphatic taggants and accelerants. Journal of Materials Chemistry, 2012 , 22, 12507		31
214	Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. <i>Advanced Materials</i> , 2012 , 24, 2572-7	24	134
213	Factors Influencing the Efficiency of Current Collection in Large Area, Monolithic Organic Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 1338-1342	21.8	23
212	Structured-gate organic field-effect transistors. Journal Physics D: Applied Physics, 2012, 45, 225105	3	7
211	High power efficiency phosphorescent poly(dendrimer) OLEDs. <i>Optics Express</i> , 2012 , 20 Suppl 2, A213-8	3.3	16
210	Photophysical properties of 9,10-disubstituted anthracene derivatives in solution and films. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 7401-5	2.8	24
209	A dendronised polymer for bulk heterojunction solar cells. <i>Polymer Chemistry</i> , 2011 , 2, 2668	4.9	13
208	Fluorescent carbazole dendrimers for the detection of explosives. <i>Polymer Chemistry</i> , 2011 , 2, 2360	4.9	76
207	A solution processable fluorene-benzothiadiazole small molecule for n-type organic field-effect transistors. <i>Applied Physics Letters</i> , 2011 , 98, 153301	3.4	16
206	A Direct, Heavy Metal Free Synthesis of the ?-1,6-Linked GlcNAc Disaccharide. <i>Australian Journal of Chemistry</i> , 2011 , 64, 536	1.2	3
205	Investigating Morphology and Stability of Fac-tris (2-phenylpyridyl)iridium(III) Films for OLEDs. <i>Advanced Functional Materials</i> , 2011 , 21, 2225-2231	15.6	41
204	Morphology of all-solution-processed "bilayer" organic solar cells. Advanced Materials, 2011, 23, 766-70	24	208
203	A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 73-81	21.8	135
202	Spin-orbit coupling in phosphorescent iridium(III) complexes. <i>ChemPhysChem</i> , 2011 , 12, 2429-38	3.2	56
201	Relativistic effects in a phosphorescent Ir(III) complex. <i>Physical Review B</i> , 2011 , 83,	3.3	38
200	Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2019-21	16.4	41
199	Solid State Dendrimer Sensors: Effect of Dendrimer Dimensionality on Detection and Sequestration of 2,4-Dinitrotoluene. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18366-18371	3.8	21

198	Synthesis and Self-Assembly of Donor Acceptor Donor Based Oligothiophenes and Their Optoelectronic Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14369-14376	3.8	28
197	Efficient Phosphorescence by Reducing Intrachain Chromophore Interactions in Dendrimer-Containing Polymers. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25464-25469	3.8	5
196	Explosive Sensing with Fluorescent Dendrimers: The Role of Collisional Quenching Chemistry of Materials, 2011 , 23, 789-794	9.6	120
195	Calculation of solid state molecular ionisation energies and electron affinities for organic semiconductors. <i>Organic Electronics</i> , 2011 , 12, 394-403	3.5	59
194	Morphology dependent electron transport in an n-type electron accepting small molecule for solar cell applications. <i>Applied Physics Letters</i> , 2011 , 98, 083301	3.4	7
193	Mechanisms of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2011 , 36, 16-45	10.1	33
192	Charge transport properties of carbazole dendrimers in organic field-effect transistors 2011,		5
191	Determining the absorption tolerance of single chromophore photodiodes for machine vision. <i>Applied Physics Letters</i> , 2010 , 96, 253303	3.4	28
190	Light-emitting dendrimer film morphology: A neutron reflectivity study. <i>Applied Physics Letters</i> , 2010 , 96, 263302	3.4	14
189	Thickness dependent absorption spectra in conjugated polymers: Morphology or interference?. <i>Applied Physics Letters</i> , 2010 , 96, 053305	3.4	23
188	High quality shadow masks for top contact organic field effect transistors using deep reactive ion etching. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 075037	2	14
187	CurrentMoltage characteristics of dendrimer light-emitting diodes. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 385106	3	3
186	The development of poly(dendrimer)s for advanced processing. <i>Polymer Chemistry</i> , 2010 , 1, 730	4.9	22
185	The effect of dendronisation of arylamine centred chromophores on field effect transistor performance. <i>Polymer Chemistry</i> , 2010 , 1, 1117	4.9	13
184	Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. <i>Macromolecules</i> , 2010 , 43, 10253-10261	5.5	67
183	Facile iterative synthesis of biphenyl dendrons with a functionalized focus. <i>Organic Letters</i> , 2010 , 12, 4338-40	6.2	9
182	A Phosphorescent Poly(dendrimer) Containing Iridium(III) Complexes: Synthesis and Light-Emitting Properties. <i>Macromolecules</i> , 2010 , 43, 6986-6994	5.5	50
181	Fluoride sensing by catechol-based Electron systems. <i>ChemPhysChem</i> , 2010 , 11, 3517-21	3.2	7

(2008-2010)

180	Photo-rechargeable battery effect in first generation cationic-cyanine dendrimers. <i>Advanced Materials</i> , 2010 , 22, 3954-8	4	20
179	Improving efficiency of MEH-PPV/TiO2 solar cells by lithium salt modification. <i>Organic Electronics</i> , 2010 , 11, 649-657	.5	16
178	Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. <i>Organic Electronics</i> , 2010 , 11, 1005-1009	5	22
177	Effects of solution processing and thermal annealing on the phosphorescence of iridium(III) complex-cored dendrimer films. <i>Organic Electronics</i> , 2010 , 11, 62-66	.5	5
176	A phosphorescent poly(dendrimer) with increased viscosity for solution-processed OLED devices. Organic Electronics, 2010, 11, 1561-1568	5	19
175	Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors. <i>Applied Physics Letters</i> , 2009 , 95, 183305	4	21
174	Sensing nitroaromatic analytes with a bifluorene-cored dendrimer 2009,		14
173	Control of Charge Transport in Iridium(III) Complex-Cored Carbazole Dendrimers by Generation and Structural Modification. <i>Advanced Functional Materials</i> , 2009 , 19, 317-323	5.6	56
172	Phosphorescent light-emitting transistors: harvesting triplet excitons. <i>Advanced Materials</i> , 2009 , 21, 4957-4961	4	42
171	Effects of thermal annealing on the photophysical properties of bisfluorene-cored dendrimer films. Organic Electronics, 2009 , 10, 803-808	.5	14
170	Ruthenium complex-cored dendrimers: Shedding light on efficiency trade-offs in dye-sensitised solar cells. <i>Organic Electronics</i> , 2009 , 10, 1356-1363	.5	34
169	High-triplet-energy dendrons: enhancing the luminescence of deep blue phosphorescent iridium(III) complexes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16681-8	6.4	174
168	Chemosensing of 1,4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. Applied Physics Letters, 2009, 95, 063305	4	41
167	A study on the preparation and photophysical properties of an iridium(III) complexed homopolymer. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4952		20
166	The development of phenylethylene dendrons for blue phosphorescent emitters. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3213		34
165	Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry. <i>Langmuir</i> , 2009 , 25, 12800-5		63
164	Enhancing the Properties of Ruthenium Dyes by Dendronization. Chemistry of Materials, 2009, 21, 3315-33	3624	15
163	Tunnelling conductance of vectorial porphyrin monolayers. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3109		10

162	Regiospecific beta-functionalization of free-base porphyrins by pseudohalogens. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 879-86	3.9	13
161	A rapid route to carbazole containing dendrons and phosphorescent dendrimers. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2121		50
160	Iridium metal complexes as an unambiguous probe of intramolecular vibrational redistribution. Journal of the American Chemical Society, 2008 , 130, 11842-3	16.4	17
159	Thickness Dependence of the Fluorescence Lifetime in Films of Bisfluorene-Cored Dendrimers. Journal of Physical Chemistry C, 2008 , 112, 20463-20468	3.8	14
158	Triplet exciton diffusion and phosphorescence quenching in iridium(III)-centered dendrimers. <i>Physical Review Letters</i> , 2008 , 100, 017402	7.4	60
157	Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3-cored dendrimer. <i>Physical Review B</i> , 2008 , 77,	3.3	24
156	Influence of the dendron chemical structure on the photophysical properties of bisfluorene-cored dendrimers. <i>Journal of Chemical Physics</i> , 2008 , 128, 204703	3.9	28
155	Solution-Processible Phosphorescent Blue Dendrimers Based on Biphenyl-Dendrons and Fac-tris(phenyltriazolyl)iridium(III) Cores. <i>Advanced Functional Materials</i> , 2008 , 18, 3080-3090	15.6	99
154	Two-Photon Absorption and Lasing in First-Generation Bisfluorene Dendrimers. <i>Advanced Materials</i> , 2008 , 20, 1940-1944	24	38
153	Electric field and temperature dependence of the hole mobility in a bis-fluorene cored dendrimer. <i>Organic Electronics</i> , 2008 , 9, 220-226	3.5	22
152	Photoinduced charge separation in poly(1,4-phenylenevinylene) derivatives studied by electron paramagnetic resonance. <i>Organic Electronics</i> , 2008 , 9, 809-815	3.5	3
151	Non-radiative decay mechanisms in blue phosphorescent iridium(III) complexes. <i>Organic Electronics</i> , 2008 , 9, 377-384	3.5	33
150	Solution processable phosphorescent rhenium(I) dendrimers. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4255		36
149	Highly Branched Phosphorescent Dendrimers for Efficient Solution-Processed Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2007 , 17, 1149-1152	15.6	76
148	The Development of Light-Emitting Dendrimers for Displays. <i>Advanced Materials</i> , 2007 , 19, 1675-1688	24	437
147	Effect of Generation and Soft Lithography on Semiconducting Dendrimer Lasers. <i>Advanced Materials</i> , 2007 , 19, 3000-3003	24	22
146	Electronically asymmetric poly(1,4-phenylenevinylene)s for photovoltaic cells. <i>Organic Electronics</i> , 2007 , 8, 801-812	3.5	4
145	Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. <i>Chemical Reviews</i> , 2007 , 107, 1097-116	68.1	683

(2004-2007)

144	Optimization of the Luminescence Efficiencies in Solution-Processed Phosphorescent Dendrimers. Journal of Display Technology, 2007 , 3, 233-237		16
143	Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. <i>Applied Physics Letters</i> , 2007 , 91, 081108	3.4	73
142	Blue Phosphorescence from Iridium(III) Complexes at Room Temperature. <i>Chemistry of Materials</i> , 2006 , 18, 5119-5129	9.6	212
141	Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes. <i>Applied Physics Letters</i> , 2006 , 88, 161105	3.4	52
140	The synthesis and properties of iridium cored dendrimers with carbazole dendrons. <i>Organic Electronics</i> , 2006 , 7, 85-98	3.5	44
139	Singlet exciton diffusion in MEH-PPV films studied by exciton annihilation. <i>Organic Electronics</i> , 2006 , 7, 452-456	3.5	145
138	Study of the effect of changing the microstructure of titania layers on composite solar cell performance. <i>Thin Solid Films</i> , 2006 , 511-512, 523-528	2.2	19
137	Investigating the Effect of Steric Crowding in Phosphorescent Dendrimers. <i>Macromolecules</i> , 2005 , 38, 9564-9570	5.5	43
136	A Light-Blue Phosphorescent Dendrimer for Efficient Solution-Processed Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2005 , 15, 1451-1458	15.6	128
135	Encapsulated Cores: Host-Free Organic Light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers. <i>Advanced Materials</i> , 2005 , 17, 1945-1948	24	139
134	Triplet exciton diffusion in fac-tris(2-phenylpyridine) iridium(III)-cored electroluminescent dendrimers. <i>Applied Physics Letters</i> , 2005 , 86, 091104	3.4	110
133	Ultrafast depolarization of the fluorescence in a conjugated polymer. <i>Physical Review B</i> , 2005 , 72,	3.3	99
132	Simple color tuning of phosphorescent dendrimer light emitting diodes. <i>Applied Physics Letters</i> , 2005 , 86, 161104	3.4	25
131	A short route to chlorin-Ediones. <i>Journal of Porphyrins and Phthalocyanines</i> , 2005 , 09, 444-450	1.8	4
130	Electrochemical and spectroelectrochemical properties of building blocks for molecular arrays: reactions of quinoxalino[2,3-b]porphyrins containing metal(II) ions. <i>Journal of Porphyrins and Phthalocyanines</i> , 2005 , 09, 142-151	1.8	16
129	Relating the physical structure and optical properties of conjugated polymers using neutron reflectivity in combination with photoluminescence spectroscopy. <i>Journal of Applied Physics</i> , 2004 , 95, 2391-2396	2.5	26
128	Tuning of emission color for blue dendrimer blend light-emitting diodes. <i>Applied Physics Letters</i> , 2004 , 85, 1463-1465	3.4	54
127	Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications. Advanced Materials, 2004, 16, 557-560	24	158

126	Fast, long-range electron-transfer reactions of a "blue" copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer. <i>Chemical Communications</i> , 2004 , 316-7	5.8	25
125	The synthesis and properties of solution processable red-emitting phosphorescent dendrimers. Journal of Materials Chemistry, 2004 , 14, 2881		58
124	Charge transport in highly efficient iridium cored electrophosphorescent dendrimers. <i>Journal of Applied Physics</i> , 2004 , 95, 438-445	2.5	66
123	Photophysics of Fac-Tris(2-Phenylpyridine) Iridium(III) Cored Electroluminescent Dendrimers in Solution and Films. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1570-1577	3.4	108
122	Controlling the conjugation length in poly[5-n-butyl-2-(2-ethylhexyl)-1,4-phenylenevinylene]: exploring the scope of hydrogen radical substitution of leaving groups on precursor polymers. <i>Synthetic Metals</i> , 2004 , 145, 159-169	3.6	8
121	Optical amplification in a first-generation dendritic organic semiconductor. <i>Optics Letters</i> , 2004 , 29, 869)- 3 1	27
120	Conjugated dendrimers: a modular approach to materials for full-color displays 2004 , 5214, 50		
119	Nanocomposite titanium dioxide/polymer photovoltaic cells: effects of TiO 2 microstructure, time, and illumination power 2004 , 5215, 32		3
118	The Effect of Core Delocalization on Intermolecular Interactions in Conjugated Dendrimers. <i>Advanced Functional Materials</i> , 2003 , 13, 211-218	15.6	43
117	Influence of molecular structure on the properties of dendrimer light-emitting diodes. <i>Organic Electronics</i> , 2003 , 4, 71-76	3.5	43
116	Synthesis and Properties of Highly Efficient Electroluminescent Green Phosphorescent Iridium Cored Dendrimers. <i>Macromolecules</i> , 2003 , 36, 9721-9730	5.5	144
115	Bright electroluminescence from a new conjugated dendrimer. <i>Synthetic Metals</i> , 2003 , 137, 1125-1126	3.6	11
114	Conformational disorder and energy migration in MEH-PPV with partially broken conjugation. <i>Journal of Chemical Physics</i> , 2003 , 118, 7644	3.9	92
113	Probing the polymer-electrode interface using neutron reflection. <i>Applied Physics Letters</i> , 2003 , 82, 272	4 , 2 726	5 ₁₁
112	The effect of intermolecular interactions on the electro-optical properties of porphyrin dendrimers with conjugated dendrons. <i>Journal of Materials Chemistry</i> , 2003 , 13, 235-242		18
111	Polarized organic electroluminescence: Ordering from the top. <i>Applied Physics Letters</i> , 2003 , 83, 5347-5	3;4.9	18
110	Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. <i>Applied Physics Letters</i> , 2003 , 82, 4824-4826	3.4	107
109	Novel Heterolayer Organic Light-Emitting Diodes Based on a Conjugated Dendrimer. <i>Advanced Functional Materials</i> , 2002 , 12, 507	15.6	52

(2001-2002)

108	Neutron reflection study on soluble and insoluble poly[2-(2\text{Lethylhexyloxy})-5-methoxy-1,4-phenylenevinylene) films. <i>Journal of Applied Physics</i> , 2002 , 91, 9066-9071	2.5	15
107	Origin of spectral broadening in Econjugated amorphous semiconductors. <i>Physical Review B</i> , 2002 , 66,	3.3	12
106	Exciton confinement in organic dendrimer quantum wells for opto-electronic applications. <i>Journal of Chemical Physics</i> , 2002 , 116, 455-459	3.9	28
105	Bright electroluminescence from a conjugated dendrimer. <i>Applied Physics Letters</i> , 2002 , 81, 2285-2287	3.4	42
104	Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method. <i>Applied Physics Letters</i> , 2002 , 81, 3266-3268	3.4	31
103	Improvement of luminescence efficiency by electrical annealing in single-layer organic light-emitting diodes based on a conjugated dendrimer. <i>Journal Physics D: Applied Physics</i> , 2002 , 35, 520	- 3 23	18
102	Control of Intrachromophore Excitonic Coherence in Electroluminescent Conjugated Dendrimers. Journal of Physical Chemistry B, 2002 , 106, 7647-7653	3.4	56
101	Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system. <i>Journal of Chemical Physics</i> , 2002 , 116, 8893-8903	3.9	105
100	Synthesis and Excited State Spectroscopy of Tris(distyrylbenzenyl)amine-cored Electroluminescent Dendrimers. <i>Macromolecules</i> , 2002 , 35, 7891-7901	5.5	31
99	Thermal routes to low HOMOIUMO energy gap poly(arylenevinylene)s. <i>Journal of Materials Chemistry</i> , 2002 , 12, 200-205		19
98	High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes. <i>Applied Physics Letters</i> , 2002 , 80, 2645-2647	3.4	201
97	Green Phosphorescent Dendrimer for Light-Emitting Diodes 2002 , 14, 975		8
96	StructureBroperty relationships in conjugated molecules. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 85, 190-194	3.1	29
95	Control of Electrophosphorescence in Conjugated Dendrimer Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2001 , 11, 287-294	15.6	78
94	Control of Charge Transport and Intermolecular Interaction in Organic Light-Emitting Diodes by Dendrimer Generation. <i>Advanced Materials</i> , 2001 , 13, 258-261	24	132
93	Control of mobility in molecular organic semiconductors by dendrimer generation. <i>Physical Review B</i> , 2001 , 63,	3.3	91
92	Nanoengineering of organic semiconductors for light-emitting diodes: control of charge transport. <i>Synthetic Metals</i> , 2001 , 116, 357-362	3.6	18

90	The optoelectronic properties of electroluminescent dendrimers. Synthetic Metals, 2001, 121, 1671-167	'2 3.6	27
89	Control of conjugation in poly(arylenevinylene)s. Synthetic Metals, 2001, 119, 269-270	3.6	5
88	Charge transport in conjugated dendrimers for light-emitting diodes. Synthetic Metals, 2001, 121, 1703-	- 1376 04	10
87	Investigating the effect of conjugation in MEH-PPV. Synthetic Metals, 2001, 119, 571-572	3.6	14
86	Time-resolved PL studies of partially conjugated MEH-PPV control of excimer emission. <i>Synthetic Metals</i> , 2001 , 119, 575-576	3.6	8
85	Control of polymerBlectrode interactions: the effect of leaving group on the optical properties and device characteristics of EHPPV. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2228-2231		24
84	A new synthetic approach to porphyrin-diones and a -2,3,12,13-tetraone: building blocks for laterally conjugated porphyrin arrays. <i>Journal of the Chemical Society, Perkin Transactions</i> 1, 2001 , 14-20)	36
83	Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene. <i>Physical Review B</i> , 2000 , 61, 13670-13678	3.3	74
82	Ultrafast polarized fluorescence dynamics in an organic dendrimer. <i>Applied Physics Letters</i> , 2000 , 77, 1120-1122	3.4	28
81	Optical studies of polymer light-emitting diodes using electroabsorption measurements. <i>Synthetic Metals</i> , 2000 , 111-112, 241-244	3.6	3
80	Bis-porphyrin arrays. Part 3.The synthesis of model bis-porphyrin dimers and an electrochemical study. <i>Journal of the Chemical Society, Perkin Transactions</i> 1, 2000 , 1231-1240		13
79	Bis-porphyrin arrays. Part 2. The synthesis of asymmetrically substituted bis-porphyrins. <i>Journal of the Chemical Society, Perkin Transactions 1</i> , 2000 , 605-609		8
78	Comparison of precursor polymer routes to and electronic properties of a new phenylacetylene derivatised poly[2-(2?-ethylhexyloxy)-1,4-phenylenevinylene]. <i>Journal of Materials Chemistry</i> , 2000 , 10, 275-281		7
77	Electroluminescence from a new distyrylbenzene based triazine dendrimer. <i>Journal of Materials Chemistry</i> , 2000 , 10, 867-871		62
76	Effect of generation on the electronic properties of light-emitting dendrimers 1999,		2
75	Optical studies of electric fields in poly(2-methoxy-5-ethyl (2?-hexyloxy) para-phenylene vinylene) light-emitting diodes. <i>Applied Physics Letters</i> , 1999 , 74, 3714-3716	3.4	33
74	Conjugated Dendrimers for Light-Emitting Diodes: Effect of Generation. <i>Advanced Materials</i> , 1999 , 11, 371-374	24	225
73	Bis-porphyrin arrays. Part 1. The synthesis of meso-halophenyl porphyrin-Ediones. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1999 , 583-592		18

72	Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV. <i>Physical Review B</i> , 1999 , 59, 15133-15142	3.3	72
71	A study on the molecular weight of the chloro-precursor polymer to MEHPPV. <i>Journal of Materials Chemistry</i> , 1999 , 9, 847-849		5
70	Comparison of the electronic properties of poly[2-(2?-ethylhexyloxy)-1,4-phenylenevinylene] prepared by different precursor polymer routes. <i>Journal of Materials Chemistry</i> , 1999 , 9, 2165-2170		12
69	Control of colour and charge injection in conjugated dendrimer/polypyridine bilayer leds. <i>Synthetic Metals</i> , 1999 , 102, 1571-1574	3.6	24
68	Synthetic routes to phenylene vinylene dendrimers. Synthetic Metals, 1999, 102, 1468-1469	3.6	16
67	The effect of dendrimer generation on LED efficiency. Synthetic Metals, 1999, 102, 922-923	3.6	23
66	Charge injection into OLED's during operation studied by Electroabsorption screening. <i>Synthetic Metals</i> , 1999 , 102, 1075-1076	3.6	2
65	Synthesis of a porphyrin/conjugated polymer hybrid. <i>Synthetic Metals</i> , 1999 , 102, 1089-1090	3.6	15
64	Conjugated dendrimers for LEDs: Control of colour. Synthetic Metals, 1999, 102, 1113-1114	3.6	47
63	Substituted PPV's for blue light. Synthetic Metals, 1999, 102, 1120-1121	3.6	
63	Substituted PPV's for blue light. <i>Synthetic Metals</i> , 1999 , 102, 1120-1121 A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999 , 32, 111-117	3.6 5·5	36
	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999 ,		36
62	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999 , 32, 111-117 A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and	5.5	
62	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999 , 32, 111-117 A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons. <i>Macromolecules</i> , 1999 , 32, 5985-5993	5·5 5·5	101
62 61 60	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999, 32, 111-117 A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons. <i>Macromolecules</i> , 1999, 32, 5985-5993 Electroabsorption studies of PPV and MEH-PPV. <i>Optical Materials</i> , 1998, 9, 88-93 A study on the oxidation of 2-hydroxyporphyrins to porphyrin-Ediones. <i>Journal of the Chemical</i>	5·5 5·5	101 32
62 61 60 59	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999, 32, 111-117 A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons. <i>Macromolecules</i> , 1999, 32, 5985-5993 Electroabsorption studies of PPV and MEH-PPV. <i>Optical Materials</i> , 1998, 9, 88-93 A study on the oxidation of 2-hydroxyporphyrins to porphyrin-Ediones. <i>Journal of the Chemical Society Perkin Transactions</i> 1, 1998, 2847-2852 Triazole-containing copolymer for use as an electron transport material in multilayer LEDs 1997,	5·5 5·5	101 32
62 61 60 59 58	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999, 32, 111-117 A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons. <i>Macromolecules</i> , 1999, 32, 5985-5993 Electroabsorption studies of PPV and MEH-PPV. <i>Optical Materials</i> , 1998, 9, 88-93 A study on the oxidation of 2-hydroxyporphyrins to porphyrin-Ediones. <i>Journal of the Chemical Society Perkin Transactions</i> 1, 1998, 2847-2852 Triazole-containing copolymer for use as an electron transport material in multilayer LEDs 1997, 3148, 178 Chelation of diamine ligands to zinc porphyrin monolayers amide-linkedto glass. <i>Journal of the</i>	5·5 5·5	101 32 14

54	The synthesis of an electronically asymmetric substituted poly(arylenevinylene); poly{2-(2?-ethylhexyloxy)-5-[(E)-4?-nitrostyryl]-l,4-phenyienevinylene}. <i>Journal of Materials Chemistry</i> , 1996 , 6, 1253-1258		8
53	Solid-state-concentration effects on the optical absorption and emission of poly(p-phenylene vinylene)-related materials. <i>Physical Review B</i> , 1996 , 54, 5516-5522	3.3	59
52	Porphyrins with appended phenanthroline units: a means by which porphyrin Bystems can be connected to an external redox centre. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 1921-1923		73
51	Experimental and Theoretical Studies of the Electronic Structure of Poly(p-phenylenevinylene) and Some Ring-Substituted Derivatives. <i>Macromolecules</i> , 1995 , 28, 1959-1965	5.5	61
50	Time-resolved luminescence measurements in poly(p-phenylenevinylene). <i>Synthetic Metals</i> , 1993 , 54, 281-288	3.6	68
49	Chemical tuning of the electronic properties of poly(p-phenylenevinylene)-based copolymers. <i>Journal of the American Chemical Society</i> , 1993 , 115, 10117-10124	16.4	215
48	Electroluminescent devices made with conjugated polymers 1993 , 1910, 84		10
47	Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 247-260	1.8	170
46	The fabrication and assessment of optical waveguides in poly (p-phenylenevinylene/poly (2,5-dimethoxy-p-phenylenevinylene) copolymer. <i>Synthetic Metals</i> , 1993 , 57, 3683-3688	3.6	22
45	Optical spectroscopy of field-induced charge in poly(2.5-dimethoxy-p-phenylene vinylene) metal-insulator-semiconductor structures. <i>Synthetic Metals</i> , 1993 , 55, 218-223	3.6	30
44	Extended Etonjugation in poly(p-phenylenevinylene) from a chemically modified precursor polymer. <i>Synthetic Metals</i> , 1993 , 55, 954-959	3.6	46
43	Electroluminescence-, conductivity-, and photoconductivity-detected magnetic resonance study of poly(p-phenylenevinylene)-based light emitting diodes. <i>Synthetic Metals</i> , 1993 , 55, 241-248	3.6	10
42	Charge injection and transport in poly(p-phenylene vinylene) light emitting diodes. <i>Synthetic Metals</i> , 1993 , 57, 4128-4133	3.6	77
41	The synthesis and characterisation of some poly(2,5-dialkoxy-1,4-phenylene vinylene)s. <i>Synthetic Metals</i> , 1993 , 55, 914-917	3.6	39
40	Determination of the average molecular weigth of poly(P-phenylenevinylene). <i>Synthetic Metals</i> , 1993 , 55, 902-907	3.6	32
39	Photoinduced absorption of structurally improved poly(p-phenylene vinylene) - no evidence for bipolarons. <i>Synthetic Metals</i> , 1993 , 55, 230-234	3.6	21
38	Hole-transporting compounds for multi-layer polymer light-emitting diodes. <i>Synthetic Metals</i> , 1993 , 57, 4163-4167	3.6	35
37	Photoluminescence and electroluminescence in conjugated polymeric systems. <i>Synthetic Metals</i> , 1993 , 57, 4031-4040	3.6	99

36	Chain alignment in poly(p-phenylene vinylene) on oriented substrates. Synthetic Metals, 1993, 55, 454-	4596	23	
35	Chemical control of colour and electroluminescent device efficiency in copolymeric poly(arylenevylenes). <i>Synthetic Metals</i> , 1993 , 55, 936-941	3.6	16	
34	Femtosecond transient absorption measurements in poly(arylenevinylene)s. <i>Synthetic Metals</i> , 1993 , 55, 15-21	3.6	33	
33	Optical probes of electronics states injected into poly(p-phenylenevinylene) electroluminescent devices. <i>Synthetic Metals</i> , 1993 , 57, 4117-4122	3.6	9	
32	The effect of side groups on the structure and ordering of poly(p-phenylene vinylene) derivatives. <i>Synthetic Metals</i> , 1993 , 55, 449-453	3.6	13	
31	Optical spectroscopy of highly ordered poly(p-phenylene vinylene). <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 7155-7172	1.8	209	
30	Structural order in poly(p-phenylene vinylene). Synthetic Metals, 1993, 55, 434-439	3.6	16	
29	Electroluminescence from multilayer conjugated polymer devicesspatial control of exciton formation and emission 1993 , 1910, 111		2	
28	The efficiency and time-dependence of luminescence from poly (p-phenylene vinylene) and derivatives. <i>Chemical Physics Letters</i> , 1993 , 213, 472-478	2.5	138	
27	Large changes in optical response through chemical pre-ordering of poly(p-phenylenevinylene). <i>Advanced Materials</i> , 1993 , 5, 40-43	24	97	
26	Poly(p-phenylenevinylene) light-emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement. <i>Applied Physics Letters</i> , 1992 , 61, 2793-2795	3.4	613	
25	Electroluminescence-detected magnetic-resonance study of polyparaphenylenevinylene (PPV)-based light-emitting diodes. <i>Physical Review B</i> , 1992 , 46, 15072-15077	3.3	117	
24	Photoinduced absorption and photoluminescence in poly(2,5-dimethoxy-p-phenylene vinylene). <i>Physical Review B</i> , 1992 , 46, 7379-7389	3.3	86	
23	Optoelectronic Device Physics Based on Conjugated Polymers. <i>Molecular Crystals and Liquid Crystals</i> , 1992 , 216, 33-38		4	
22	Electro-Absorption Spectroscopy on Poly(Arylene Vinylene)s. <i>Molecular Crystals and Liquid Crystals</i> , 1992 , 216, 117-121		15	
21	Blue-Shifted Electroluminescence from a Stable Precursor to Poly(P -Phenylene Vinylene). <i>Molecular Crystals and Liquid Crystals</i> , 1992 , 216, 111-116		25	
20	Light-Emitting Diodes Based on Conjugated Polymers: Control of Colour and Efficiency. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 647		65	
19	Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 32		110	

18	A study on the elimination reaction of sulfonium polyelectrolyte precursor polymers to poly(p-phenylenevinylene). <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 1685		14
17	Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly[(2,5-dimethyl-p-phenylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene]. <i>Journal of the Chemical Society Perkin Transactions</i> 1, 1992 , 3225		177
16	Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. <i>Nature</i> , 1992 , 356, 47-49	50.4	673
15	Electroluminescence from multilayer conjugated polymer devices: Spatial control of exciton formation and emission. <i>Chemical Physics Letters</i> , 1992 , 200, 46-54	2.5	130
14	An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1569		175
13	Synthesis and characterisation of doped and undoped poly(2,5-dimethoxy phenylene vinylene). <i>Synthetic Metals</i> , 1991 , 41, 931-934	3.6	17
12	Light emission from poly(p-phenylene vinylene): A comparison between photo- and electro-luminescence. <i>Synthetic Metals</i> , 1991 , 43, 3135-3141	3.6	40
11	A new method for the synthesis of porphyrin-Ediones that is applicable to the synthesis of trans-annular extended porphyrin systems. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1567-1568		64
10	Control of order in poly(arylene vinylene) conjugated polymers. Synthetic Metals, 1991, 41, 301-304	3.6	17
9	Regiospecific introduction of four substituents to porphyrin systems at antipodal pyrrolenic positions. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1564		76
8	Studies on the efficient synthesis of poly(phenylenevinylene) (PPV) and poly (dimethoxy phenylenevinylene) (dimethoxy-PPV). <i>Synthetic Metals</i> , 1991 , 41, 261-264	3.6	49
7	Light-emitting diodes based on conjugated polymers. <i>Nature</i> , 1990 , 347, 539-541	50.4	9967
6	Photoexcited states in poly(p-phenylene vinylene): Comparison with trans,trans-distyrylbenzene, a model oligomer. <i>Physical Review B</i> , 1990 , 42, 11670-11681	3.3	263
5	Rigid, laterally-bridged bis-porphyrin system. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 39		92
4	Efficient electrophosphorescent dendrimer LEDs		1
3	Rivers of LightITernary Exciplex Blends for High Efficiency Solution-Processed Red Phosphorescent Organic Light Emitting Diodes. <i>Advanced Functional Materials</i> ,2108128	15.6	0
2	Dielectric Constant Engineering of Organic Semiconductors: Effect of Planarity and Conjugation Length. <i>Advanced Functional Materials</i> ,2104259	15.6	1
1	Effect of Host Generation on the Luminescent and Charge Transporting Properties of Solution Processed OLEDs. <i>Advanced Materials Interfaces</i> ,2100820	4.6	2