Paul L Burn

List of Publications by Citations

Source: https://exaly.com/author-pdf/8811026/paul-l-burn-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

413 papers

29,685 citations

68 h-index

163 g-index

443 ext. papers

31,575 ext. citations

8.1 avg, IF

6.92 L-index

#	Paper	IF	Citations
413	Light-emitting diodes based on conjugated polymers. <i>Nature</i> , 1990 , 347, 539-541	50.4	9967
412	Electro-optics of perovskite solar cells. <i>Nature Photonics</i> , 2015 , 9, 106-112	33.9	1260
411	Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. <i>Chemical Reviews</i> , 2007 , 107, 1097-116	68.1	683
410	Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. <i>Nature</i> , 1992 , 356, 47-49	50.4	673
409	Poly(p-phenylenevinylene) light-emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement. <i>Applied Physics Letters</i> , 1992 , 61, 2793-2795	3.4	613
408	Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. <i>Nature Energy</i> , 2018 , 3, 847-854	62.3	476
407	Organic Photodiodes: The Future of Full Color Detection and Image Sensing. <i>Advanced Materials</i> , 2016 , 28, 4766-802	24	447
406	The Development of Light-Emitting Dendrimers for Displays. <i>Advanced Materials</i> , 2007 , 19, 1675-1688	24	437
405	Filterless narrowband visible photodetectors. <i>Nature Photonics</i> , 2015 , 9, 687-694	33.9	325
404	Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. <i>Nature Communications</i> , 2015 , 6, 6343	17.4	316
403	Photoexcited states in poly(p-phenylene vinylene): Comparison with trans,trans-distyrylbenzene, a model oligomer. <i>Physical Review B</i> , 1990 , 42, 11670-11681	3.3	263
402	Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. <i>Advanced Materials</i> , 2015 , 27, 2060-4	24	233
401	Conjugated Dendrimers for Light-Emitting Diodes: Effect of Generation. <i>Advanced Materials</i> , 1999 , 11, 371-374	24	225
400	Chemical tuning of the electronic properties of poly(p-phenylenevinylene)-based copolymers. Journal of the American Chemical Society, 1993 , 115, 10117-10124	16.4	215
399	Blue Phosphorescence from Iridium(III) Complexes at Room Temperature. <i>Chemistry of Materials</i> , 2006 , 18, 5119-5129	9.6	212
398	Optical spectroscopy of highly ordered poly(p-phenylene vinylene). <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 7155-7172	1.8	209
397	Morphology of all-solution-processed "bilayer" organic solar cells. <i>Advanced Materials</i> , 2011 , 23, 766-70	24	208

(2016-2002)

396	High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes. <i>Applied Physics Letters</i> , 2002 , 80, 2645-2647	3.4	201	
395	Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly[(2,5-dimethyl-p-phenylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene]. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1992 , 3225		177	
394	An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1569		175	
393	High-triplet-energy dendrons: enhancing the luminescence of deep blue phosphorescent iridium(III) complexes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16681-8	16.4	174	
392	Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 247-260	1.8	170	
391	Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor. <i>Chemical Reviews</i> , 2016 , 116, 12920-12955	68.1	166	
390	Thick junction broadband organic photodiodes. <i>Laser and Photonics Reviews</i> , 2014 , 8, 924-932	8.3	164	
389	Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications. <i>Advanced Materials</i> , 2004 , 16, 557-560	24	158	
388	Singlet exciton diffusion in MEH-PPV films studied by exciton annihilation. <i>Organic Electronics</i> , 2006 , 7, 452-456	3.5	145	
387	Synthesis and Properties of Highly Efficient Electroluminescent Green Phosphorescent Iridium Cored Dendrimers. <i>Macromolecules</i> , 2003 , 36, 9721-9730	5.5	144	
386	Encapsulated Cores: Host-Free Organic Light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers. <i>Advanced Materials</i> , 2005 , 17, 1945-1948	24	139	
385	The efficiency and time-dependence of luminescence from poly (p-phenylene vinylene) and derivatives. <i>Chemical Physics Letters</i> , 1993 , 213, 472-478	2.5	138	
384	A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 73-81	21.8	135	
383	Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. <i>Advanced Materials</i> , 2012 , 24, 2572-7	24	134	
382	Control of Charge Transport and Intermolecular Interaction in Organic Light-Emitting Diodes by Dendrimer Generation. <i>Advanced Materials</i> , 2001 , 13, 258-261	24	132	
381	Electroluminescence from multilayer conjugated polymer devices: Spatial control of exciton formation and emission. <i>Chemical Physics Letters</i> , 1992 , 200, 46-54	2.5	130	
380	A Light-Blue Phosphorescent Dendrimer for Efficient Solution-Processed Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2005 , 15, 1451-1458	15.6	128	
379	Organohalide Perovskites for Solar Energy Conversion. <i>Accounts of Chemical Research</i> , 2016 , 49, 545-53	24.3	122	

378	Explosive Sensing with Fluorescent Dendrimers: The Role of Collisional Quenching Chemistry of Materials, 2011 , 23, 789-794	9.6	120
377	Balanced Carrier Mobilities: Not a Necessary Condition for High-Efficiency Thin Organic Solar Cells as Determined by MIS-CELIV. <i>Advanced Energy Materials</i> , 2014 , 4, 1300954	21.8	118
376	Electroluminescence-detected magnetic-resonance study of polyparaphenylenevinylene (PPV)-based light-emitting diodes. <i>Physical Review B</i> , 1992 , 46, 15072-15077	3.3	117
375	Triplet exciton diffusion in fac-tris(2-phenylpyridine) iridium(III)-cored electroluminescent dendrimers. <i>Applied Physics Letters</i> , 2005 , 86, 091104	3.4	110
374	Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 32		110
373	Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations. <i>ACS Photonics</i> , 2014 , 1, 173-181	6.3	109
372	Photophysics of Fac-Tris(2-Phenylpyridine) Iridium(III) Cored Electroluminescent Dendrimers in Solution and Films. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1570-1577	3.4	108
371	Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. <i>Applied Physics Letters</i> , 2003 , 82, 4824-4826	3.4	107
370	Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system. <i>Journal of Chemical Physics</i> , 2002 , 116, 8893-8903	3.9	105
369	A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons. <i>Macromolecules</i> , 1999 , 32, 5985-5993	5.5	101
368	A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 54-59	21.8	99
367	Solution-Processible Phosphorescent Blue Dendrimers Based on Biphenyl-Dendrons and Fac-tris(phenyltriazolyl)iridium(III) Cores. <i>Advanced Functional Materials</i> , 2008 , 18, 3080-3090	15.6	99
366	Ultrafast depolarization of the fluorescence in a conjugated polymer. <i>Physical Review B</i> , 2005 , 72,	3.3	99
365	Photoluminescence and electroluminescence in conjugated polymeric systems. <i>Synthetic Metals</i> , 1993 , 57, 4031-4040	3.6	99
364	Large changes in optical response through chemical pre-ordering of poly(p-phenylenevinylene). <i>Advanced Materials</i> , 1993 , 5, 40-43	24	97
363	Conformational disorder and energy migration in MEH-PPV with partially broken conjugation. <i>Journal of Chemical Physics</i> , 2003 , 118, 7644	3.9	92
362	Rigid, laterally-bridged bis-porphyrin system. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 39		92
361	Control of mobility in molecular organic semiconductors by dendrimer generation. <i>Physical Review B</i> , 2001 , 63,	3.3	91

(2010-1992)

360	Photoinduced absorption and photoluminescence in poly(2,5-dimethoxy-p-phenylene vinylene). <i>Physical Review B</i> , 1992 , 46, 7379-7389	3.3	86	
359	Control of Electrophosphorescence in Conjugated Dendrimer Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2001 , 11, 287-294	15.6	78	
358	Charge injection and transport in poly(p-phenylene vinylene) light emitting diodes. <i>Synthetic Metals</i> , 1993 , 57, 4128-4133	3.6	77	
357	Fluorescent carbazole dendrimers for the detection of explosives. <i>Polymer Chemistry</i> , 2011 , 2, 2360	4.9	76	
356	Highly Branched Phosphorescent Dendrimers for Efficient Solution-Processed Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2007 , 17, 1149-1152	15.6	76	
355	Regiospecific introduction of four substituents to porphyrin systems at antipodal pyrrolenic positions. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1564		76	
354	Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities. <i>Advanced Energy Materials</i> , 2015 , 5, 1401221	21.8	75	
353	Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11465-72	16.4	75	
352	Organic electronics. Room-temperature coupling between electrical current and nuclear spins in OLEDs. <i>Science</i> , 2014 , 345, 1487-90	33.3	75	
351	Photocarrier drift distance in organic solar cells and photodetectors. <i>Scientific Reports</i> , 2015 , 5, 9949	4.9	74	
350	Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene. <i>Physical Review B</i> , 2000 , 61, 13670-13678	3.3	74	
349	Narrow band green organic photodiodes for imaging. <i>Organic Electronics</i> , 2014 , 15, 2903-2911	3.5	73	
348	Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. <i>Applied Physics Letters</i> , 2007 , 91, 081108	3.4	73	
347	Porphyrins with appended phenanthroline units: a means by which porphyrin Esystems can be connected to an external redox centre. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 1921-1923		73	
346	Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV. <i>Physical Review B</i> , 1999 , 59, 15133-15142	3.3	72	
345	Time-resolved luminescence measurements in poly(p-phenylenevinylene). <i>Synthetic Metals</i> , 1993 , 54, 281-288	3.6	68	
344	Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. <i>Advanced Materials</i> , 2013 , 25, 6213-8	24	67	
343	Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. <i>Macromolecules</i> , 2010 , 43, 10253-10261	5.5	67	

342	Charge transport in highly efficient iridium cored electrophosphorescent dendrimers. <i>Journal of Applied Physics</i> , 2004 , 95, 438-445	2.5	66
341	Light-Emitting Diodes Based on Conjugated Polymers: Control of Colour and Efficiency. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 647		65
340	A new method for the synthesis of porphyrin-Ediones that is applicable to the synthesis of trans-annular extended porphyrin systems. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1567-1568		64
339	Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry. <i>Langmuir</i> , 2009 , 25, 12800-5	4	63
338	All solution-processed, hybrid light emitting field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 6410)- 5 4	62
337	Electroluminescence from a new distyrylbenzene based triazine dendrimer. <i>Journal of Materials Chemistry</i> , 2000 , 10, 867-871		62
336	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. <i>ACS Applied Materials & District Materials & D</i>	9.5	62
335	Experimental and Theoretical Studies of the Electronic Structure of Poly(p-phenylenevinylene) and Some Ring-Substituted Derivatives. <i>Macromolecules</i> , 1995 , 28, 1959-1965	5.5	61
334	Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. <i>Nature Communications</i> , 2015 , 6, 8240	17.4	60
333	Triplet exciton diffusion and phosphorescence quenching in iridium(III)-centered dendrimers. <i>Physical Review Letters</i> , 2008 , 100, 017402	7.4	60
332	Calculation of solid state molecular ionisation energies and electron affinities for organic semiconductors. <i>Organic Electronics</i> , 2011 , 12, 394-403	3.5	59
331	Solid-state-concentration effects on the optical absorption and emission of poly(p-phenylene vinylene)-related materials. <i>Physical Review B</i> , 1996 , 54, 5516-5522	3.3	59
330	The synthesis and properties of solution processable red-emitting phosphorescent dendrimers. Journal of Materials Chemistry, 2004 , 14, 2881		58
329	Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3532	7.1	57
328	Spin-orbit coupling in phosphorescent iridium(III) complexes. <i>ChemPhysChem</i> , 2011 , 12, 2429-38	3.2	56
327	Control of Charge Transport in Iridium(III) Complex-Cored Carbazole Dendrimers by Generation and Structural Modification. <i>Advanced Functional Materials</i> , 2009 , 19, 317-323	15.6	56
326	Control of Intrachromophore Excitonic Coherence in Electroluminescent Conjugated Dendrimers. Journal of Physical Chemistry B, 2002 , 106, 7647-7653	3.4	56
325	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22542-22558	13	55

(2003-2016)

324	Slower carriers limit charge generation in organic semiconductor light-harvesting systems. <i>Nature Communications</i> , 2016 , 7, 11944	17.4	55
323	Controlling Hierarchy in Solution-processed Polymer Solar Cells Based on Crosslinked P3HT. <i>Advanced Energy Materials</i> , 2013 , 3, 105-112	21.8	54
322	A blue-emitting triazole-based conjugated polymer. <i>Advanced Materials</i> , 1997 , 9, 1174-1178	24	54
321	Tuning of emission color for blue dendrimer blend light-emitting diodes. <i>Applied Physics Letters</i> , 2004 , 85, 1463-1465	3.4	54
320	Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes. <i>Applied Physics Letters</i> , 2006 , 88, 161105	3.4	52
319	Novel Heterolayer Organic Light-Emitting Diodes Based on a Conjugated Dendrimer. <i>Advanced Functional Materials</i> , 2002 , 12, 507	15.6	52
318	Doping-Induced Screening of the Built-in-Field in Organic Solar Cells: Effect on Charge Transport and Recombination. <i>Advanced Energy Materials</i> , 2013 , 3, 321-327	21.8	50
317	A Phosphorescent Poly(dendrimer) Containing Iridium(III) Complexes: Synthesis and Light-Emitting Properties. <i>Macromolecules</i> , 2010 , 43, 6986-6994	5.5	50
316	A rapid route to carbazole containing dendrons and phosphorescent dendrimers. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2121		50
315	Studies on the efficient synthesis of poly(phenylenevinylene) (PPV) and poly (dimethoxy phenylenevinylene) (dimethoxy-PPV). <i>Synthetic Metals</i> , 1991 , 41, 261-264	3.6	49
314	The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. <i>Scientific Reports</i> , 2014 , 4, 5695	4.9	47
313	Conjugated dendrimers for LEDs: Control of colour. Synthetic Metals, 1999, 102, 1113-1114	3.6	47
312	Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals. <i>Laser and Photonics Reviews</i> , 2016 , 10, 1047-1053	8.3	46
311	Extended Etonjugation in poly(p-phenylenevinylene) from a chemically modified precursor polymer. <i>Synthetic Metals</i> , 1993 , 55, 954-959	3.6	46
310	Effects of fluorination on iridium(III) complex phosphorescence: magnetic circular dichroism and relativistic time-dependent density functional theory. <i>Inorganic Chemistry</i> , 2012 , 51, 2821-31	5.1	45
309	The synthesis and properties of iridium cored dendrimers with carbazole dendrons. <i>Organic Electronics</i> , 2006 , 7, 85-98	3.5	44
308	Investigating the Effect of Steric Crowding in Phosphorescent Dendrimers. <i>Macromolecules</i> , 2005 , 38, 9564-9570	5.5	43
307	The Effect of Core Delocalization on Intermolecular Interactions in Conjugated Dendrimers. <i>Advanced Functional Materials</i> , 2003 , 13, 211-218	15.6	43

306	Influence of molecular structure on the properties of dendrimer light-emitting diodes. <i>Organic Electronics</i> , 2003 , 4, 71-76	3.5	43
305	Phosphorescent light-emitting transistors: harvesting triplet excitons. <i>Advanced Materials</i> , 2009 , 21, 4957-4961	24	42
304	Bright electroluminescence from a conjugated dendrimer. <i>Applied Physics Letters</i> , 2002 , 81, 2285-2287	3.4	42
303	Dielectric constant enhancement of non-fullerene acceptors via side-chain modification. <i>Chemical Communications</i> , 2015 , 51, 14115-8	5.8	41
302	Efficient, monolithic large area organohalide perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13830-13836	13	41
301	Investigating Morphology and Stability of Fac-tris (2-phenylpyridyl)iridium(III) Films for OLEDs. <i>Advanced Functional Materials</i> , 2011 , 21, 2225-2231	15.6	41
300	Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2019-21	16.4	41
299	Chemosensing of 1,4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. <i>Applied Physics Letters</i> , 2009 , 95, 063305	3.4	41
298	Bond Fission and Non-Radiative Decay in Iridium(III) Complexes. <i>Inorganic Chemistry</i> , 2016 , 55, 5266-73	5.1	41
297	Insoluble Poly [2-(2?-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] for Use in Multilayer Light-Emitting Diodes. <i>Advanced Materials</i> , 1997 , 9, 1171-1174	24	40
296	Light emission from poly(p-phenylene vinylene): A comparison between photo- and electro-luminescence. <i>Synthetic Metals</i> , 1991 , 43, 3135-3141	3.6	40
295	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. <i>Nature Communications</i> , 2021 , 12, 52	17.4	40
294	Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. <i>Applied Physics Letters</i> , 2012 , 101, 083306	3.4	39
293	The synthesis and characterisation of some poly(2,5-dialkoxy-1,4-phenylene vinylene)s. <i>Synthetic Metals</i> , 1993 , 55, 914-917	3.6	39
292	Relativistic effects in a phosphorescent Ir(III) complex. <i>Physical Review B</i> , 2011 , 83,	3.3	38
291	Two-Photon Absorption and Lasing in First-Generation Bisfluorene Dendrimers. <i>Advanced Materials</i> , 2008 , 20, 1940-1944	24	38
290	The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1901090	24	36
289	Solution processable phosphorescent rhenium(I) dendrimers. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4255		36

288	A new synthetic approach to porphyrin-Ediones and a -2,3,12,13-tetraone: building blocks for laterally conjugated porphyrin arrays. <i>Journal of the Chemical Society, Perkin Transactions</i> 1, 2001 , 14-20)	36	
287	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). <i>Macromolecules</i> , 1999 , 32, 111-117	5.5	36	
286	Engineering dielectric constants in organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3736-3747	7.1	35	
285	High-Performance, Solution-Processed Non-polymeric Organic Photodiodes. <i>Advanced Optical Materials</i> , 2015 , 3, 50-56	8.1	35	
284	Hole-transporting compounds for multi-layer polymer light-emitting diodes. <i>Synthetic Metals</i> , 1993 , 57, 4163-4167	3.6	35	
283	Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors. <i>Advanced Energy Materials</i> , 2018 , 8, 1702941	21.8	34	
282	Nanostructured, active organic-metal junctions for highly efficient charge generation and extraction in polymer-fullerene solar cells. <i>Advanced Materials</i> , 2012 , 24, 1055-61	24	34	
281	Measuring internal quantum efficiency to demonstrate hot exciton dissociation. <i>Nature Materials</i> , 2013 , 12, 593	27	34	
280	Ruthenium complex-cored dendrimers: Shedding light on efficiency trade-offs in dye-sensitised solar cells. <i>Organic Electronics</i> , 2009 , 10, 1356-1363	3.5	34	
279	The development of phenylethylene dendrons for blue phosphorescent emitters. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3213		34	
278	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8402-8406	16.4	33	
277	The spin-Dicke effect in OLED magnetoresistance. <i>Nature Physics</i> , 2015 , 11, 910-914	16.2	33	
276	Electro-Optics of Conventional and Inverted Thick Junction Organic Solar Cells. <i>ACS Photonics</i> , 2015 , 2, 1745-1754	6.3	33	
275	Correlation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2593	7.1	33	
274	Hybrid Area-Emitting Transistors: Solution Processable and with High Aperture Ratios. <i>Advanced Materials</i> , 2015 , 27, 6677-82	24	33	
273	Mechanisms of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2011 , 36, 16-45	10.1	33	
272	Non-radiative decay mechanisms in blue phosphorescent iridium(III) complexes. <i>Organic Electronics</i> , 2008 , 9, 377-384	3.5	33	
271	Optical studies of electric fields in poly(2-methoxy-5-ethyl (2?-hexyloxy) para-phenylene vinylene) light-emitting diodes. <i>Applied Physics Letters</i> , 1999 , 74, 3714-3716	3.4	33	

270	Femtosecond transient absorption measurements in poly(arylenevinylene)s. <i>Synthetic Metals</i> , 1993 , 55, 15-21	3.6	33
269	Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29714-29730	3.6	32
268	Electroabsorption studies of PPV and MEH-PPV. Optical Materials, 1998, 9, 88-93	3.3	32
267	Determination of the average molecular weigth of poly(P-phenylenevinylene). <i>Synthetic Metals</i> , 1993 , 55, 902-907	3.6	32
266	Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors. <i>Scientific Reports</i> , 2015 , 5, 8818	4.9	31
265	Advantage of suppressed non-Langevin recombination in low mobility organic solar cells. <i>Applied Physics Letters</i> , 2014 , 105, 013302	3.4	31
264	Time-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerene layers. <i>Langmuir</i> , 2014 , 30, 11474-84	4	31
263	Diffusionthe hidden menace in organic optoelectronic devices. <i>Advanced Materials</i> , 2012 , 24, 822-6	24	31
262	High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives. Journal of Physical Chemistry C, 2013 , 117, 5328-5337	3.8	31
261	ITO-free top emitting organic light emitting diodes with enhanced light out-coupling. <i>Laser and Photonics Reviews</i> , 2014 , 8, 165-171	8.3	31
2 60	Fluorescent carbazole dendrimers for the detection of nitroaliphatic taggants and accelerants. Journal of Materials Chemistry, 2012 , 22, 12507		31
259	Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method. <i>Applied Physics Letters</i> , 2002 , 81, 3266-3268	3.4	31
258	Synthesis and Excited State Spectroscopy of Tris(distyrylbenzenyl)amine-cored Electroluminescent Dendrimers. <i>Macromolecules</i> , 2002 , 35, 7891-7901	5.5	31
257	The Molecular Origin of Anisotropic Emission in an Organic Light-Emitting Diode. <i>Nano Letters</i> , 2017 , 17, 6464-6468	11.5	30
256	Optical spectroscopy of field-induced charge in poly(2.5-dimethoxy-p-phenylene vinylene) metal-insulator-semiconductor structures. <i>Synthetic Metals</i> , 1993 , 55, 218-223	3.6	30
255	Poly(dendrimers) with Phosphorescent Iridium(III) Complex-Based Side Chains Prepared via Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2012 , 45, 2963-2971	5.5	29
254	StructureBroperty relationships in conjugated molecules. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 85, 190-194	3.1	29
253	Dependence of Organic Interlayer Diffusion on Glass-Transition Temperature in OLEDs. <i>ACS Applied Materials & Mate</i>	9.5	28

252	Determining the absorption tolerance of single chromophore photodiodes for machine vision. <i>Applied Physics Letters</i> , 2010 , 96, 253303	3.4	28	
251	Synthesis and Self-Assembly of DonorAcceptorDonor Based Oligothiophenes and Their Optoelectronic Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14369-14376	3.8	28	
250	Influence of the dendron chemical structure on the photophysical properties of bisfluorene-cored dendrimers. <i>Journal of Chemical Physics</i> , 2008 , 128, 204703	3.9	28	
249	Exciton confinement in organic dendrimer quantum wells for opto-electronic applications. <i>Journal of Chemical Physics</i> , 2002 , 116, 455-459	3.9	28	
248	Ultrafast polarized fluorescence dynamics in an organic dendrimer. <i>Applied Physics Letters</i> , 2000 , 77, 1120-1122	3.4	28	
247	Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. <i>Advanced Materials</i> , 2020 , 32, e1905785	24	28	
246	Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter. <i>Chemical Science</i> , 2016 , 7, 6974-6980	9.4	27	
245	Optical amplification in a first-generation dendritic organic semiconductor. <i>Optics Letters</i> , 2004 , 29, 86	9-₹1	27	
244	The optoelectronic properties of electroluminescent dendrimers. Synthetic Metals, 2001, 121, 1671-16	73 .6	27	
243	Host-Free Blue Phosphorescent Dendrimer Organic Light-Emitting Field-Effect Transistors and Equivalent Light-Emitting Diodes: A Comparative Study. <i>ACS Photonics</i> , 2017 , 4, 754-760	6.3	26	
242	Free carrier generation in organic photovoltaic bulk heterojunctions of conjugated polymers with molecular acceptors: planar versus spherical acceptors. <i>ChemPhysChem</i> , 2014 , 15, 1539-49	3.2	26	
241	The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9845-53	3.6	26	
240	Chelation of diamine ligands to zinc porphyrin monolayers amide-linkedto glass. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1997 , 2581-2586		26	
239	Relating the physical structure and optical properties of conjugated polymers using neutron reflectivity in combination with photoluminescence spectroscopy. <i>Journal of Applied Physics</i> , 2004 , 95, 2391-2396	2.5	26	
238	A flexible n-type organic semiconductor for optoelectronics. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1800-1806		25	
237	Fast, long-range electron-transfer reactions of a "blue" copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer. <i>Chemical Communications</i> , 2004 , 316-7	5.8	25	
236	Simple color tuning of phosphorescent dendrimer light emitting diodes. <i>Applied Physics Letters</i> , 2005 , 86, 161104	3.4	25	
235	Blue-Shifted Electroluminescence from a Stable Precursor to Poly(P -Phenylene Vinylene). Molecular Crystals and Liquid Crystals, 1992, 216, 111-116		25	

234	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26866-26874	3.8	24
233	Electric Field and Mobility Dependent First-Order Recombination Losses in Organic Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601379	21.8	24
232	Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoO as an interfacial layer. <i>Nanoscale</i> , 2017 , 9, 251-257	7.7	24
231	In-plane superfluid density and microwave conductivity of the organic superconductor E(BEDT-TTF)2Cu[N(CN)2]Br: Evidence for d-wave pairing and resilient quasiparticles. <i>Physical Review B</i> , 2013 , 88,	3.3	24
230	Photophysical properties of 9,10-disubstituted anthracene derivatives in solution and films. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 7401-5	2.8	24
229	Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3-cored dendrimer. <i>Physical Review B</i> , 2008 , 77,	3.3	24
228	Control of polymer lectrode interactions: the effect of leaving group on the optical properties and device characteristics of EHPPV. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2228-2231		24
227	Control of colour and charge injection in conjugated dendrimer/polypyridine bilayer leds. <i>Synthetic Metals</i> , 1999 , 102, 1571-1574	3.6	24
226	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. <i>Science and Technology of Advanced Materials</i> , 2015 , 16, 025002	7.1	23
225	Unlocking the full potential of light emitting field-effect transistors by engineering charge injection layers. <i>Organic Electronics</i> , 2013 , 14, 2953-2961	3.5	23
224	Efficient and bright polymer light emitting field effect transistors. <i>Organic Electronics</i> , 2015 , 17, 371-37	6 3.5	23
223	High mobility solution-processed hybrid light emitting transistors. <i>Applied Physics Letters</i> , 2014 , 105, 183302	3.4	23
222	Factors Influencing the Efficiency of Current Collection in Large Area, Monolithic Organic Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 1338-1342	21.8	23
221	Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5989	13	23
220	Thickness dependent absorption spectra in conjugated polymers: Morphology or interference?. <i>Applied Physics Letters</i> , 2010 , 96, 053305	3.4	23
219	The effect of dendrimer generation on LED efficiency. <i>Synthetic Metals</i> , 1999 , 102, 922-923	3.6	23
218	Chain alignment in poly(p-phenylene vinylene) on oriented substrates. Synthetic Metals, 1993 , 55, 454-4	15 <u>9</u> 6	23
217	An external quantum efficiency of >20% from solution-processed poly(dendrimer) organic light-emitting diodes. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	23

216	Worldwide outdoor round robin study of organic photovoltaic devices and modules. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 281-290	6.4	22	
215	The development of poly(dendrimer)s for advanced processing. <i>Polymer Chemistry</i> , 2010 , 1, 730	4.9	22	
214	Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. <i>Organic Electronics</i> , 2010 , 11, 1005-1009	3.5	22	
213	Effect of Generation and Soft Lithography on Semiconducting Dendrimer Lasers. <i>Advanced Materials</i> , 2007 , 19, 3000-3003	24	22	
212	Electric field and temperature dependence of the hole mobility in a bis-fluorene cored dendrimer. <i>Organic Electronics</i> , 2008 , 9, 220-226	3.5	22	
211	The fabrication and assessment of optical waveguides in poly (p-phenylenevinylene/poly (2,5-dimethoxy-p-phenylenevinylene) copolymer. <i>Synthetic Metals</i> , 1993 , 57, 3683-3688	3.6	22	
210	Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. <i>Macromolecules</i> , 2016 , 49, 4404-4415	5.5	21	
209	Solid State Dendrimer Sensors: Effect of Dendrimer Dimensionality on Detection and Sequestration of 2,4-Dinitrotoluene. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18366-18371	3.8	21	
208	Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors. <i>Applied Physics Letters</i> , 2009 , 95, 183305	3.4	21	
207	Photoinduced absorption of structurally improved poly(p-phenylene vinylene) - no evidence for bipolarons. <i>Synthetic Metals</i> , 1993 , 55, 230-234	3.6	21	
206	High-Mobility, Heterostructure Light-Emitting Transistors and Complementary Inverters. <i>ACS Photonics</i> , 2014 , 1, 954-959	6.3	20	
205	Deuteration of molecules for neutron reflectometry on organic light-emitting diode thin films. <i>Tetrahedron Letters</i> , 2012 , 53, 931-935	2	20	
204	Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer. <i>Electrochimica Acta</i> , 2013 , 100, 72-77	6.7	20	
203	A study on the preparation and photophysical properties of an iridium(III) complexed homopolymer. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4952		20	
202	Photo-rechargeable battery effect in first generation cationic-cyanine dendrimers. <i>Advanced Materials</i> , 2010 , 22, 3954-8	24	20	
201	Determination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices. <i>Langmuir</i> , 2014 , 30, 1410-5	4	19	
200	Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection. <i>Sensors and Actuators B: Chemical</i> , 2015 , 210, 550-557	8.5	19	
199	A new diketopyrrolopyrrole-based co-polymer for ambipolar field-effect transistors and solar cells. Organic Electronics, 2012 , 13, 1981-1988	3.5	19	

198	A phosphorescent poly(dendrimer) with increased viscosity for solution-processed OLED devices. Organic Electronics, 2010 , 11, 1561-1568	3.5	19
197	Study of the effect of changing the microstructure of titania layers on composite solar cell performance. <i>Thin Solid Films</i> , 2006 , 511-512, 523-528	2.2	19
196	Thermal routes to low HOMOIUMO energy gap poly(arylenevinylene)s. <i>Journal of Materials Chemistry</i> , 2002 , 12, 200-205		19
195	Revealing the Interplay between Charge Transport, Luminescence Efficiency, and Morphology in Organic Light-Emitting Diode Blends. <i>Advanced Functional Materials</i> , 2020 , 30, 1907942	15.6	19
194	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. <i>ACS Nano</i> , 2019 , 13, 5513-5522	16.7	18
193	Solution structure: defining polymer film morphology and optoelectronic device performance. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 71-77	7.1	18
192	Three-dimensional carbazole-based dendrimers: model structures for studying charge transport in organic semiconductor films. <i>Polymer Chemistry</i> , 2013 , 4, 916-925	4.9	18
191	Molecular weight dependent bimolecular recombination in organic solar cells. <i>Journal of Chemical Physics</i> , 2014 , 141, 054903	3.9	18
190	Design protocols in triarylamine cored dendrimer-based explosive sensors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1322-1329	7.1	18
189	The effect of intermolecular interactions on the electro-optical properties of porphyrin dendrimers with conjugated dendrons. <i>Journal of Materials Chemistry</i> , 2003 , 13, 235-242		18
188	Polarized organic electroluminescence: Ordering from the top. <i>Applied Physics Letters</i> , 2003 , 83, 5347-5	33429	18
187	Improvement of luminescence efficiency by electrical annealing in single-layer organic light-emitting diodes based on a conjugated dendrimer. <i>Journal Physics D: Applied Physics</i> , 2002 , 35, 520	-323	18
186	Nanoengineering of organic semiconductors for light-emitting diodes: control of charge transport. <i>Synthetic Metals</i> , 2001 , 116, 357-362	3.6	18
185	Bis-porphyrin arrays. Part 1. The synthesis of meso-halophenyl porphyrin-Ediones. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1999 , 583-592		18
184	An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500420	4.6	18
183	Solid-State Fluorescence-based Sensing of TATP via Hydrogen Peroxide Detection. <i>ACS Sensors</i> , 2019 , 4, 134-142	9.2	18
182	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10799-10812	7.1	17
181	Improved stability of non-ITO stacked electrodes for large area flexible organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 182-190	6.4	17

180	Photophysics of delocalized excitons in carbazole dendrimers. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 6270-8	2.8	17
179	Iridium metal complexes as an unambiguous probe of intramolecular vibrational redistribution. Journal of the American Chemical Society, 2008 , 130, 11842-3	16.4	17
178	Synthesis and characterisation of doped and undoped poly(2,5-dimethoxy phenylene vinylene). <i>Synthetic Metals</i> , 1991 , 41, 931-934	3.6	17
177	Control of order in poly(arylene vinylene) conjugated polymers. Synthetic Metals, 1991, 41, 301-304	3.6	17
176	Understanding charge transport in Ir(ppy):CBP OLED films. <i>Journal of Chemical Physics</i> , 2019 , 150, 0941	19 9	16
175	Morphology of a Bulk Heterojunction Photovoltaic Cell with Low Donor Concentration. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 32413-32419	9.5	16
174	Dynamics of Charge Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture. <i>ACS Photonics</i> , 2014 , 1, 114-120	6.3	16
173	Charge Transport in a Highly Phosphorescent Iridium(III) Complex-Cored Dendrimer with Double Dendrons. <i>Advanced Functional Materials</i> , 2012 , 22, 157-165	15.6	16
172	Bulk heterojunction thickness uniformity la limiting factor in large area organic solar cells?. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2246-2254	1.6	16
171	Energetic requirements of iridium(III) complex based photosensitisers in photocatalytic hydrogen generation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21577-85	3.6	16
170	A solution processable fluorene-benzothiadiazole small molecule for n-type organic field-effect transistors. <i>Applied Physics Letters</i> , 2011 , 98, 153301	3.4	16
169	High power efficiency phosphorescent poly(dendrimer) OLEDs. <i>Optics Express</i> , 2012 , 20 Suppl 2, A213-8	3.3	16
168	Improving efficiency of MEH-PPV/TiO2 solar cells by lithium salt modification. <i>Organic Electronics</i> , 2010 , 11, 649-657	3.5	16
167	Optimization of the Luminescence Efficiencies in Solution-Processed Phosphorescent Dendrimers. Journal of Display Technology, 2007 , 3, 233-237		16
166	Electrochemical and spectroelectrochemical properties of building blocks for molecular arrays: reactions of quinoxalino[2,3-b]porphyrins containing metal(II) ions. <i>Journal of Porphyrins and Phthalocyanines</i> , 2005 , 09, 142-151	1.8	16
165	Synthetic routes to phenylene vinylene dendrimers. <i>Synthetic Metals</i> , 1999 , 102, 1468-1469	3.6	16
164	Chemical control of colour and electroluminescent device efficiency in copolymeric poly(arylenevylenes). <i>Synthetic Metals</i> , 1993 , 55, 936-941	3.6	16
163	Structural order in poly(p-phenylene vinylene). Synthetic Metals, 1993, 55, 434-439	3.6	16

162	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> , 12, 37647	-37556	i 16
161	The structural impact of water sorption on device-quality melanin thin films. <i>Soft Matter</i> , 2017 , 13, 395.	4-ુ3 ∂ 65	15
160	Room-temperature tilted-target sputtering deposition of highly transparent and low sheet resistance Al doped ZnO electrodes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5322-5331	7.1	15
159	Solution-processed pentathiophene dendrimer based photodetectors for digital cameras. <i>Sensors and Actuators B: Chemical</i> , 2014 , 196, 245-251	8.5	15
158	Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption. <i>Applied Physics Letters</i> , 2013 , 102, 223302	3.4	15
157	Enhancing the Properties of Ruthenium Dyes by Dendronization. <i>Chemistry of Materials</i> , 2009 , 21, 3315	-33324	15
156	Neutron reflection study on soluble and insoluble poly[2-(2æthylhexyloxy)-5-methoxy-1,4-phenylenevinylene) films. <i>Journal of Applied Physics</i> , 2002 , 91, 9066-9071	2.5	15
155	Synthesis of a porphyrin/conjugated polymer hybrid. Synthetic Metals, 1999, 102, 1089-1090	3.6	15
154	Electro-Absorption Spectroscopy on Poly(Arylene Vinylene)s. <i>Molecular Crystals and Liquid Crystals</i> , 1992 , 216, 117-121		15
153	Considerations for Upscaling of Organohalide Perovskite Solar Cells. <i>Advanced Optical Materials</i> , 2017 , 5, 1600819	8.1	14
152	Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3. <i>Inorganic Chemistry</i> , 2015 , 54, 10457-61	5.1	14
151	Orange-Red-Light-Emitting Field-Effect Transistors Based on Phosphorescent Pt(II) Complexes with Area Emission. <i>Advanced Optical Materials</i> , 2016 , 4, 1867-1874	8.1	14
150	Light-emitting dendrimer film morphology: A neutron reflectivity study. <i>Applied Physics Letters</i> , 2010 , 96, 263302	3.4	14
149	High quality shadow masks for top contact organic field effect transistors using deep reactive ion etching. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 075037	2	14
148	Sensing nitroaromatic analytes with a bifluorene-cored dendrimer 2009,		14
147	Effects of thermal annealing on the photophysical properties of bisfluorene-cored dendrimer films. <i>Organic Electronics</i> , 2009 , 10, 803-808	3.5	14
146	A study on the oxidation of 2-hydroxyporphyrins to porphyrin-Ediones. <i>Journal of the Chemical Society Perkin Transactions</i> 1, 1998 , 2847-2852		14
145	Thickness Dependence of the Fluorescence Lifetime in Films of Bisfluorene-Cored Dendrimers. Journal of Physical Chemistry C, 2008, 112, 20463-20468	3.8	14

144	Investigating the effect of conjugation in MEH-PPV. Synthetic Metals, 2001, 119, 571-572	3.6	14
143	A study on the elimination reaction of sulfonium polyelectrolyte precursor polymers to poly(p-phenylenevinylene). <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 1685		14
142	Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells. <i>ACS Applied Materials & Description</i> (2017), 9, 42986-42995	9.5	13
141	Recombination Losses Above and Below the Transport Percolation Threshold in Bulk Heterojunction Organic Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1703339	21.8	13
140	On the unipolarity of charge transport in methanofullerene diodes. <i>Npj Flexible Electronics</i> , 2017 , 1,	10.7	13
139	Pathway to high throughput, low cost indium-free transparent electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13892-13899	13	13
138	Carbazole/iridium dendrimer side-chain phosphorescent copolymers for efficient light emitting devices. <i>New Journal of Chemistry</i> , 2012 , 36, 407-413	3.6	13
137	The flouble dendron[approach to host free phosphorescent poly(dendrimer) OLEDs. <i>Polymer Chemistry</i> , 2012 , 3, 734	4.9	13
136	A dendronised polymer for bulk heterojunction solar cells. <i>Polymer Chemistry</i> , 2011 , 2, 2668	4.9	13
135	The effect of dendronisation of arylamine centred chromophores on field effect transistor performance. <i>Polymer Chemistry</i> , 2010 , 1, 1117	4.9	13
134	Regiospecific beta-functionalization of free-base porphyrins by pseudohalogens. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 879-86	3.9	13
133	Bis-porphyrin arrays. Part 3.The synthesis of model bis-porphyrin dimers and an electrochemical study. <i>Journal of the Chemical Society, Perkin Transactions 1</i> , 2000 , 1231-1240		13
132	The effect of side groups on the structure and ordering of poly(p-phenylene vinylene) derivatives. <i>Synthetic Metals</i> , 1993 , 55, 449-453	3.6	13
131	Dicyanovinyl-based fluorescent sensors for dual mechanism amine sensing. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13723-13732	7.1	13
130	Diffusion at Interfaces in OLEDs Containing a Doped Phosphorescent Emissive Layer. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600184	4.6	13
129	A simple iterative method for the synthesis of \P 1->6)-glucosamine oligosaccharides. <i>Carbohydrate Research</i> , 2013 , 371, 68-76	2.9	12
128	Origin of spectral broadening in Econjugated amorphous semiconductors. <i>Physical Review B</i> , 2002 , 66,	3.3	12
127	Comparison of the electronic properties of poly[2-(2?-ethylhexyloxy)-1,4-phenylenevinylene] prepared by different precursor polymer routes. <i>Journal of Materials Chemistry</i> , 1999 , 9, 2165-2170		12

126	Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2640-6	6.4	12
125	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. <i>ChemPhysChem</i> , 2016 , 17, 3350-3353	3.2	12
124	Highly processable, rubbery poly(n-butyl acrylate) grafted poly(phenylene vinylene)s. <i>European Polymer Journal</i> , 2016 , 84, 355-365	5.2	12
123	Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. <i>Carbon</i> , 2021 , 171, 350-358	10.4	12
122	Twisted dendrons for highly luminescent green emissive phosphorescent dendrimers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10315-10326	7.1	12
121	Application of an A-A'-A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 24046-24054	9.5	12
120	Organic light-emitting diodes comprising highly luminescent red-emitting dendrimers with carbazole-based dendrons. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4681-4691	7.1	11
119	Clustering of High Molecular Weight PCDTBT in Bulk-Heterojunction Casting Solutions. <i>Macromolecules</i> , 2015 , 48, 8331-8336	5.5	11
118	Tuning the optoelectronic properties of nonfullerene electron acceptors. <i>ChemPhysChem</i> , 2015 , 16, 129	95.304	11
117	High-Sensitivity Poly(dendrimer)-Based Sensors for the Detection of Explosives and Taggant Vapors. <i>Macromolecules</i> , 2020 , 53, 1652-1664	5.5	11
116	Exact exchange and the density functional theory of metal-to-ligand charge-transfer in fac-Ir(ppy)3. <i>Organic Electronics</i> , 2016 , 33, 110-115	3.5	11
115	Synthesis and properties of pyrrolo[3,2-b]pyrrole-1,4-diones (isoDPP) derivatives. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4276	7.1	11
114	Impact of Acceptor Crystallinity on the Photophysics of Nonfullerene Blends for Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13460-13466	3.8	11
113	Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 727-733	8.5	11
112	Kinetics of charge transfer processes in organic solar cells: Implications for the design of acceptor molecules. <i>Organic Electronics</i> , 2012 , 13, 2538-2545	3.5	11
111	Bright electroluminescence from a new conjugated dendrimer. <i>Synthetic Metals</i> , 2003 , 137, 1125-1126	3.6	11
110	Probing the polymer-electrode interface using neutron reflection. <i>Applied Physics Letters</i> , 2003 , 82, 272	4 52 720	5 11
109	Time-independent charge carrier mobility in a model polymer:fullerene organic solar cell. <i>Organic Electronics</i> , 2015 , 16, 205-211	3.5	10

Tunnelling conductance of vectorial porphyrin monolayers. Journal of Materials Chemistry, 2008, 18, 3109 108 10 Charge transport in conjugated dendrimers for light-emitting diodes. Synthetic Metals, 2001, 121, 1703-1704 107 10 Electroluminescent devices made with conjugated polymers 1993, 1910, 84 106 10 Electroluminescence-, conductivity-, and photoconductivity-detected magnetic resonance study of 3.6 105 10 poly(p-phenylenevinylene)-based light emitting diodes. Synthetic Metals, 1993, 55, 241-248 Thiophene dendrimer-based low donor content solar cells. Applied Physics Letters, 2016, 109, 103302 104 3.4 10 Charge transport in an organic light emitting diode material measured using metal-insulator-semiconductor charge extraction by linearly increasing voltage with parameter 103 2.5 9 variation. Journal of Applied Physics, 2019, 126, 035501 Perdeuteration of poly[2-methoxy-5-(2?-ethylhexyloxy)-1,4-phenylenevinylene] (d-MEH-PPV): control of microscopic charge-carrier spin pin coupling and of magnetic-field effects in 102 7.1 9 optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 2764-2771 Tuning the optoelectronic properties of cyanine and ketocyanine dyes by incorporation of 4.6 101 9 9,9-di-n-propylfluorenylindolenine. *Dyes and Pigments*, **2014**, 101, 1-8 Facile iterative synthesis of biphenyl dendrons with a functionalized focus. Organic Letters, 2010, 6.2 100 9 12, 4338-40 Cyano-substituted model compounds and conjugated polymers of PPV. Synthetic Metals, 2001, 119, 635-686 99 Optical probes of electronics states injected into poly(p-phenylenevinylene) electroluminescent 98 3.6 9 devices. Synthetic Metals, 1993, 57, 4117-4122 Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules, 2020, 5.5 9 97 53, 10375-10385 96 A thiocarbonyl-containing small molecule for optoelectronics. RSC Advances, 2017, 7, 10316-10322 8 3.7 Synthesis of grafted poly(p-phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and 8 5.2 95 photoluminescence materials. European Polymer Journal, 2017, 89, 263-271 Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. Chemical 8 5.8 94 Communications, 2015, 51, 17406-9 Optimized multilayer indium-free electrodes for organic photovoltaics. Physica Status Solidi (A) 1.6 93 Applications and Materials Science, 2015, 212, 348-355 Spectral response tuning using an optical spacer in broad-band organic solar cells. Applied Physics 8 92 3.4 Letters, 2013, 102, 013302 Controlling the conjugation length in poly[5-n-butyl-2-(2-ethylhexyl)-1,4-phenylenevinylene]: exploring the scope of hydrogen radical substitution of leaving groups on precursor polymers. 3.6 8 91 Synthetic Metals, 2004, 145, 159-169

90	Bis-porphyrin arrays. Part 2. The synthesis of asymmetrically substituted bis-porphyrins. <i>Journal of the Chemical Society, Perkin Transactions</i> 1, 2000 , 605-609		8
89	Time-resolved PL studies of partially conjugated MEH-PPV control of excimer emission. <i>Synthetic Metals</i> , 2001 , 119, 575-576	3.6	8
88	The synthesis of an electronically asymmetric substituted poly(arylenevinylene); poly{2-(2?-ethylhexyloxy)-5-[(E)-4?-nitrostyryl]-l,4-phenyienevinylene}. <i>Journal of Materials Chemistry</i> , 1996 , 6, 1253-1258		8
87	Elucidating the effects of guest-host energy level alignment on charge transport in phosphorescent OLEDs. <i>Applied Physics Letters</i> , 2019 , 115, 263301	3.4	8
86	Loss Mechanisms in Fullerene-Based Low-Donor Content Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20611-20618	3.8	8
85	Green Phosphorescent Dendrimer for Light-Emitting Diodes 2002 , 14, 975		8
84	A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 9096-9101	9.5	7
83	Graphene-Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. <i>Solar Rrl</i> , 2019 , 3, 1900042	7.1	7
82	Charge transport and recombination in heterostructure organic light emitting transistors. <i>Organic Electronics</i> , 2015 , 25, 37-43	3.5	7
81	Perdeuterated Conjugated Polymers for Ultralow-Frequency Magnetic Resonance of OLEDs. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9388-9392	16.4	7
80	Carbohydrate globules: molecular asterisk-cored dendrimers for carbohydrate presentation. <i>Polymer Chemistry</i> , 2014 , 5, 1173-1179	4.9	7
79	Morphology dependent electron transport in an n-type electron accepting small molecule for solar cell applications. <i>Applied Physics Letters</i> , 2011 , 98, 083301	3.4	7
78	Structured-gate organic field-effect transistors. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 225105	3	7
77	Fluoride sensing by catechol-based Electron systems. <i>ChemPhysChem</i> , 2010 , 11, 3517-21	3.2	7
76	Comparison of precursor polymer routes to and electronic properties of a new phenylacetylene derivatised poly[2-(2?-ethylhexyloxy)-1,4-phenylenevinylene]. <i>Journal of Materials Chemistry</i> , 2000 , 10, 275-281		7
75	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 889-899	6.1	7
74	Calculating transition dipole moments of phosphorescent emitters for efficient organic light-emitting diodes. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 9740-9746	3.6	6
73	Influence of Dopant Concentration and Steric Bulk on Interlayer Diffusion in OLEDs. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1700872	4.6	6

(2016-2021)

72	Unraveling exciton processes in Ir(ppy):CBP OLED films upon photoexcitation. <i>Journal of Chemical Physics</i> , 2021 , 154, 164101	3.9	6	
71	Floquet spin states in OLEDs. <i>Nature Communications</i> , 2021 , 12, 465	17.4	6	
70	Conjugated Polymer Light-Emitting Diodes 2020 , 77-98		5	
69	Detection of explosive analytes using a dendrimer-based field-effect transistor. <i>Organic Electronics</i> , 2013 , 14, 1255-1261	3.5	5	
68	Charge Generation in Non-Fullerene Donor Acceptor Blends for Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 18412-18422	3.8	5	
67	Superconductivity suppression and peak resistivity enhancement for thin crystals of E(BEDT-TTF)2Cu(SCN)2. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 979-984	1.3	5	
66	Efficient Phosphorescence by Reducing Intrachain Chromophore Interactions in Dendrimer-Containing Polymers. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25464-25469	3.8	5	
65	Charge transport properties of carbazole dendrimers in organic field-effect transistors 2011,		5	
64	Effects of solution processing and thermal annealing on the phosphorescence of iridium(III) complex-cored dendrimer films. <i>Organic Electronics</i> , 2010 , 11, 62-66	3.5	5	
63	Control of conjugation in poly(arylenevinylene)s. Synthetic Metals, 2001, 119, 269-270	3.6	5	
62	A study on the molecular weight of the chloro-precursor polymer to MEHPPV. <i>Journal of Materials Chemistry</i> , 1999 , 9, 847-849		5	
61	A red emissive poly(dendrimer) for solution processed organic light-emitting diodes. <i>Organic Electronics</i> , 2020 , 78, 105594	3.5	5	
60	Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. <i>Communications Chemistry</i> , 2021 , 4,	6.3	5	
59	Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 25861-25868	3.6	5	
58	Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance. <i>Organic Electronics</i> , 2020 , 76, 105480	3.5	5	
57	Morphology of OLED Film Stacks Containing Solution-Processed Phosphorescent Dendrimers. <i>ACS Applied Materials & Dendrimers</i> , 2018, 10, 3848-3855	9.5	4	
56	The synthesis and ring-opening metathesis polymerization of glycomonomers. <i>RSC Advances</i> , 2016 , 6, 31256-31264	3.7	4	
55	Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(iii) complexes in thin films on dielectric surfaces. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3575-80	3.6	4	

54	Electronically asymmetric poly(1,4-phenylenevinylene)s for photovoltaic cells. <i>Organic Electronics</i> , 2007 , 8, 801-812	3.5	4
53	A short route to chlorin-Ediones. <i>Journal of Porphyrins and Phthalocyanines</i> , 2005 , 09, 444-450	1.8	4
52	Optoelectronic Device Physics Based on Conjugated Polymers. <i>Molecular Crystals and Liquid Crystals</i> , 1992 , 216, 33-38		4
51	White Dendrimer Organic Light Emitting Diodes: Exciton Formation and Transfer. <i>Advanced Optical Materials</i> , 2020 , 8, 2001289	8.1	4
50	Luminescent poly(dendrimer)s for the detection of explosives. <i>Materials Advances</i> , 2020 , 1, 837-844	3.3	4
49	Evolution and Morphology of Thin Films Formed by Solvent Evaporation: An Organic Semiconductor Case Study. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 40548-40557	9.5	4
48	AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes. <i>Journal of Applied Physics</i> , 2016 , 119, 245501	2.5	4
47	Flexible ITO-Free Organic Photovoltaics on Ultra-Thin Flexible Glass Substrates with High Efficiency and Improved Stability. <i>Solar Rrl</i> , 2019 , 3, 1800286	7.1	3
46	Analysis of the emitting states of an Ir(III) complex with strong blue emission. <i>Chemical Physics Letters</i> , 2015 , 641, 62-67	2.5	3
45	The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor. <i>Applied Physics Letters</i> , 2013 , 102, 243301	3.4	3
44	A Direct, Heavy Metal Free Synthesis of the ?-1,6-Linked GlcNAc Disaccharide. <i>Australian Journal of Chemistry</i> , 2011 , 64, 536	1.2	3
43	CurrentNoltage characteristics of dendrimer light-emitting diodes. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 385106	3	3
42	Photoinduced charge separation in poly(1,4-phenylenevinylene) derivatives studied by electron paramagnetic resonance. <i>Organic Electronics</i> , 2008 , 9, 809-815	3.5	3
41	Nanocomposite titanium dioxide/polymer photovoltaic cells: effects of TiO 2 microstructure, time, and illumination power 2004 , 5215, 32		3
40	Optical studies of polymer light-emitting diodes using electroabsorption measurements. <i>Synthetic Metals</i> , 2000 , 111-112, 241-244	3.6	3
39	Measuring the Magnetic Field Amplitude of rf Radiation by the Quasistatic Magnetic Field Effect in Organic Light-Emitting Diodes. <i>Physical Review Applied</i> , 2021 , 15,	4.3	3
38	Hole-Transporting Poly(dendrimer)s as Electron Donors for Low Donor Organic Solar Cells with Efficient Charge Transport. <i>Macromolecules</i> , 2020 , 53, 2902-2911	5.5	3
37	Balanced Hole and Electron Transport in Ir(ppy)3:TCTA Blends. ACS Photonics, 2021 , 8, 2425-2430	6.3	3

36	Effect of n-propyl substituents on the emission properties of blue phosphorescent iridium(iii) complexes. <i>Journal of Chemical Physics</i> , 2017 , 146, 174305	3.9	2	
35	Sensitive and fast fluorescence-based indirect sensing of TATP RSC Advances, 2019 , 9, 7032-7042	3.7	2	
34	Quantitative real time sensing reveals enhanced sensitivity of polar dendrimer thin films for plastic explosive taggants. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9412-9424	7.1	2	
33	Annealing-enhanced birefringence and aggregation in MEH-PPV: A spectroscopic ellipsometry study. <i>Journal of Applied Physics</i> , 2020 , 127, 093101	2.5	2	
32	Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films. <i>Organic Electronics</i> , 2018 , 55, 177-186	3.5	2	
31	Effect of Surface Roughness on Light-Absorber Orientation in an Organic Photovoltaic Film. <i>Chemistry of Materials</i> , 2019 , 31, 6918-6924	9.6	2	
30	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. <i>Organic Electronics</i> , 2017 , 50, 339-346	3.5	2	
29	Effect of generation on the electronic properties of light-emitting dendrimers 1999,		2	
28	Charge injection into OLED's during operation studied by Electroabsorption screening. <i>Synthetic Metals</i> , 1999 , 102, 1075-1076	3.6	2	
27	Electroluminescence from multilayer conjugated polymer devicesspatial control of exciton formation and emission 1993 , 1910, 111		2	
26	Light-emitting dendrimer: exciplex host-based solution-processed white organic light-emitting diodes. <i>Organic Electronics</i> , 2021 , 100, 106389	3.5	2	
25	Pyrrolo[3,2-]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small Molecular Acceptors for Organic Solar Cells. <i>Molecules</i> , 2020 , 25,	4.8	2	
24	Preserving the work function of Ultra-Violet-ozone treated indium tin oxide by triarylamine-based small molecule modification for solution-processed organic light-emitting diodes with increased external quantum efficiency. <i>Thin Solid Films</i> , 2021 , 718, 138475	2.2	2	
23	Effect of Host Generation on the Luminescent and Charge Transporting Properties of Solution Processed OLEDs. <i>Advanced Materials Interfaces</i> ,2100820	4.6	2	
22	A solution-processed bis-tridentate iridium(III) complex-cored dendrimer for green OLEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 9545-9554	7.1	2	
21	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie</i> , 2017 , 129, 8522-8526	3.6	1	
20	Thin film properties of triphenylamine-cored dendrimers: A molecular approach to control aggregation. <i>Thin Solid Films</i> , 2013 , 548, 190-194	2.2	1	
19	Efficient electrophosphorescent dendrimer LEDs		1	

18	Effect of dendron structure on the luminescent and charge transporting properties of solution processed dendrimer-based OLEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 16033-16043	7.1	1
17	Properties of PDMS-divinylbenzene based pre-concentrators for nitroaromatic vapors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16967-16973	7.1	1
16	A three-dimensional multi-chromophore naphthalene diimide acceptor for polymer bulk heterojunction solar cells. <i>Synthetic Metals</i> , 2020 , 268, 116505	3.6	1
15	Diffusion in Organic Film Stacks Containing Solution-Processed Phosphorescent Poly(dendrimer) Dopants. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 30910-30920	9.5	1
14	Effect of precursor macromonomer molecular weight on poly(dimethylsiloxane) film morphology and nitroaromatic vapor sorption. <i>Sensors and Actuators B: Chemical</i> , 2018 , 270, 283-290	8.5	1
13	Dielectric Constant Engineering of Organic Semiconductors: Effect of Planarity and Conjugation Length. <i>Advanced Functional Materials</i> ,2104259	15.6	1
12	Effect of dendrimer surface groups on the properties of phosphorescent emissive films. <i>Organic Electronics</i> , 2021 , 99, 106321	3.5	1
11	Investigating the donor:acceptor ratio in thermally activated delayed fluorescence light-emitting macromolecules. <i>Organic Electronics</i> , 2022 , 105, 106500	3.5	1
10	Rivers of LightIllernary Exciplex Blends for High Efficiency Solution-Processed Red Phosphorescent Organic Light Emitting Diodes. <i>Advanced Functional Materials</i> ,2108128	15.6	O
9	Determining the Correlation between Excited State Dynamics and Donor and Acceptor Structure in Nonfullerene Acceptors. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 17851-17863	3.8	O
8	Understanding the performance differences between solution and vacuum deposited OLEDs: A computational approach. <i>Journal of Chemical Physics</i> , 2022 , 156, 214703	3.9	0
7	9,9?-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells. <i>Synthetic Metals</i> , 2019 , 250, 79-87	3.6	
6	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. <i>ChemPhysChem</i> , 2016 , 17, 3345-3345	3.2	
5	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1771, 33-44		
4	Pentacene/K12 solar cells formed by organic vapor phase deposition. <i>Journal of Photonics for Energy</i> , 2014 , 4, 043092	1.2	
3	Triazole-containing copolymer for use as an electron transport material in multilayer LEDs 1997 , 3148, 178		
2	Conjugated dendrimers: a modular approach to materials for full-color displays 2004 , 5214, 50		
1	Substituted PPV's for blue light. <i>Synthetic Metals</i> , 1999 , 102, 1120-1121	3.6	