Qiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8810366/publications.pdf

Version: 2024-02-01

687220 677027 22 823 13 22 h-index citations g-index papers 23 23 23 1032 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Assessment of hydrological response to multiyear drought: Insights from lag characteristics and shift magnitude. Hydrological Processes, 2022, 36, .	1.1	2
2	Effect of water-level fluctuations on methane and carbon dioxide dynamics in a shallow lake of Northern China: Implications for wetland restoration. Journal of Hydrology, 2021, 597, 126169.	2.3	11
3	The complex drought effects associated with the regulation of water-use efficiency in a temperate water-limited basin. Journal of Hydrology: Regional Studies, 2021, 36, 100864.	1.0	2
4	Regulation of Vegetation and Evapotranspiration by Water Level Fluctuation in Shallow Lakes. Water (Switzerland), 2021, 13, 2651.	1.2	2
5	Assessing climate and land-use change impacts on streamflow in a mountainous catchment. Journal of Water and Climate Change, 2020, 11, 503-513.	1.2	9
6	Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. Journal of Hydrology, 2020, 581, 124418.	2.3	39
7	Longâ€Term Temporal Scaleâ€Dependent Warming Effects on the Mass Balance in the Dongkemadi Glacier, Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033105.	1.2	6
8	Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements. Water (Switzerland), 2020, 12, 837.	1.2	10
9	Effects of Groundwater Level Changes Associated with Coastline Changes in Coastal Wetlands. Wetlands, 2020, 40, 1647-1656.	0.7	3
10	Mass Balance Variation and Associative Climate Drivers for the Dongkemadi Glacier in the Central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10814-10825.	1.2	14
11	Analyzing the influence of landscape pattern change on ecological water requirements in an arid/semiarid region of China. Journal of Hydrology, 2019, 578, 124098.	2.3	34
12	The energy and mass balance of a continental glacier: Dongkemadi Glacier in central Tibetan Plateau. Scientific Reports, 2018, 8, 12788.	1.6	18
13	Regulation of drainage canals on the groundwater level in a typical coastal wetlands. Journal of Hydrology, 2017, 555, 463-478.	2.3	17
14	Assessment of ecological instream flow requirements under climate change Pseudorasbora parva. International Journal of Environmental Science and Technology, 2017, 14, 509-520.	1.8	5
15	The hydrological effects of varying vegetation characteristics in a temperate water-limited basin: Development of the dynamic Budyko-Choudhury-Porporato (dBCP) model. Journal of Hydrology, 2016, 543, 595-611.	2.3	66
16	Interactions Between Surface Water and Groundwater: Key Processes in Ecological Restoration of Degraded Coastal Wetlands Caused by Reclamation. Wetlands, 2016, 36, 95-102.	0.7	33
17	Physiological responses of <i>Phragmites australis</i> to the combined effects of water and salinity stress. Ecohydrology, 2014, 7, 420-426.	1.1	24
18	Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. Journal of Hydrology, 2012, 464-465, 352-362.	2.3	91

QIANG LIU

#	Article	IF	CITATION
19	Impacts of climate change/variability on the streamflow in the Yellow River Basin, China. Ecological Modelling, 2011, 222, 268-274.	1.2	65
20	Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River Basin, China. Hydrological Sciences Journal, 2011, 56, 1015-1026.	1.2	14
21	Quantitative estimation of the impact of climate change on actual evapotranspiration in the Yellow River Basin, China. Journal of Hydrology, 2010, 395, 226-234.	2.3	87
22	Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. Journal of Hydrology, 2008, 361, 330-338.	2.3	271