List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8809848/publications.pdf Version: 2024-02-01

Υινινιανι Ηγ

#	Article	IF	CITATIONS
1	Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA Journal of Numerical Analysis, 2015, 35, 767-801.	2.9	147
2	Two-level Stabilized Finite Element Methods for the Steady Navier–Stokes Problem. Computing (Vienna/New York), 2005, 74, 337-351.	4.8	119
3	A new stabilized finite element method for the transient Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2007, 197, 22-35.	6.6	117
4	Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Applied Mathematical Modelling, 2014, 38, 1511-1522.	4.2	81
5	A multilevel finite element method in space-time for the Navier-Stokes problem. Numerical Methods for Partial Differential Equations, 2005, 21, 1052-1078.	3.6	68
6	Homotopy analysis method for higher-order fractional integro-differential equations. Computers and Mathematics With Applications, 2011, 62, 3194-3203.	2.7	68
7	Newton Iterative Parallel Finite Element Algorithm forÂthe Steady Navier-Stokes Equations. Journal of Scientific Computing, 2010, 44, 92-106.	2.3	54
8	Two-Level Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics. Journal of Scientific Computing, 2015, 63, 426-451.	2.3	47
9	Numerical simulation of the three dimensional Allen–Cahn equation by the high-order compact ADI method. Computer Physics Communications, 2014, 185, 2449-2455.	7.5	43
10	Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation. Computers and Mathematics With Applications, 2015, 69, 1390-1406.	2.7	41
11	A new parallel finite element algorithm for the stationary Navier–Stokes equations. Finite Elements in Analysis and Design, 2011, 47, 1262-1279.	3.2	39
12	Euler implicit/explicit iterative scheme for the stationary Navier–Stokes equations. Numerische Mathematik, 2013, 123, 67-96.	1.9	38
13	Twoâ€level Newton iterative method for the 2D/3D steady Navierâ€6tokes equations. Numerical Methods for Partial Differential Equations, 2012, 28, 1620-1642.	3.6	37
14	A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Computer Methods in Applied Mechanics and Engineering, 2019, 356, 435-464.	6.6	36
15	Multi-level spectral galerkin method for the navier-stokes problem I : spatial discretization. Numerische Mathematik, 2005, 101, 501-522.	1.9	33
16	A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 998-1020.	6.6	33
17	A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2010, 235, 708-725.	2.0	32
18	Assessment of subgrid-scale models for the incompressible Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2010, 234, 593-604.	2.0	32

#	Article	IF	CITATIONS
19	A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2012, 209-212, 172-183.	6.6	31
20	A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations. Numerische Mathematik, 2012, 122, 279-304.	1.9	30
21	The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems. Applied Mathematical Modelling, 2012, 36, 561-572.	4.2	30
22	A Family of Fourth-Order and Sixth-Order Compact Difference Schemes for the Three-Dimensional Poisson Equation. Journal of Scientific Computing, 2013, 54, 97-120.	2.3	30
23	Multi-level spectral Galerkin method for the Navier–Stokes equations, II: time discretization. Advances in Computational Mathematics, 2006, 25, 403-433.	1.6	28
24	Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs. Computing (Vienna/New York), 2009, 86, 37-51.	4.8	28
25	Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations withH2 orH1 initial data. Numerical Methods for Partial Differential Equations, 2005, 21, 875-904.	3.6	25
26	Stability and convergence of the spectral Galerkin method for the Cahnâ€Hilliard equation. Numerical Methods for Partial Differential Equations, 2008, 24, 1485-1500.	3.6	25
27	Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics. Numerical Methods for Partial Differential Equations, 2014, 30, 1877-1901.	3.6	24
28	High order iterative methods without derivatives for solving nonlinear equations. Applied Mathematics and Computation, 2007, 186, 1617-1623.	2.2	23
29	\$\$H^2\$\$ H 2 -Stability of the First Order Fully Discrete Schemes for the Time-Dependent Navier–Stokes Equations. Journal of Scientific Computing, 2015, 62, 230-264.	2.3	22
30	A defect-correction method for unsteady conduction convection problems I: spatial discretization. Science China Mathematics, 2011, 54, 185-204.	1.7	21
31	Two-Level Coupled and Decoupled Parallel Correction Methods for Stationary Incompressible Magnetohydrodynamics. Journal of Scientific Computing, 2015, 65, 920-939.	2.3	21
32	Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics. Science China Mathematics, 2016, 59, 589-608.	1.7	21
33	A defect-correction method for unsteady conduction–convection problems II: Time discretization. Journal of Computational and Applied Mathematics, 2012, 236, 2553-2573.	2.0	20
34	A penalty finite volume method for the transient Navier–Stokes equations. Applied Numerical Mathematics, 2008, 58, 1583-1613.	2.1	19
35	P 1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations. Journal of Scientific Computing, 2012, 52, 519-545.	2.3	19
36	A new method to deduce high-order compact difference schemes for two-dimensional Poisson equation. Applied Mathematics and Computation, 2014, 230, 9-26.	2.2	19

#	Article	IF	CITATIONS
37	Stability and convergence of iterative methods related to viscosities for the 2D/3D steady Navier–Stokes equations. Journal of Mathematical Analysis and Applications, 2015, 423, 1129-1149.	1.0	19
38	Discontinuous finite volume methods for the stationary Stokes–Darcy problem. International Journal for Numerical Methods in Engineering, 2016, 107, 395-418.	2.8	19
39	Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Advances in Computational Mathematics, 2018, 44, 1295-1319.	1.6	19
40	Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem. Numerische Mathematik, 2004, 98, 647-673.	1.9	18
41	Traveling wavefronts for a two-species predator–prey system with diffusion terms and stage structure. Applied Mathematical Modelling, 2009, 33, 1356-1365.	4.2	18
42	A quadratic equal-order stabilized finite element method for the conduction–convection equations. Computers and Fluids, 2013, 86, 169-176.	2.5	18
43	The finite volume method based on stabilized finite element for the stationary Navier–Stokes problem. Journal of Computational and Applied Mathematics, 2007, 205, 651-665.	2.0	17
44	Decoupled schemes for unsteady MHD equations. I. time discretization. Numerical Methods for Partial Differential Equations, 2017, 33, 956-973.	3.6	17
45	A pressure-robust virtual element method for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 2021, 382, 113879.	6.6	17
46	On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization. Applied Mathematical Modelling, 2010, 34, 4089-4105.	4.2	16
47	The Crankâ€Nicolson/Adamsâ€Bashforth scheme for the timeâ€dependent Navierâ€Stokes equations with nonsmooth initial data. Numerical Methods for Partial Differential Equations, 2012, 28, 155-187.	3.6	16
48	A strongly conservative finite element method for the coupled Stokes–Biot Model. Computers and Mathematics With Applications, 2020, 80, 1421-1442.	2.7	16
49	A twoâ€level finite element method for the stationary Navierâ€Stokes equations based on a stabilized local projection. Numerical Methods for Partial Differential Equations, 2011, 27, 460-477.	3.6	15
50	An efficient two-step algorithm for the incompressible flow problem. Advances in Computational Mathematics, 2015, 41, 1059-1077.	1.6	15
51	Finite volume method based on stabilized finite elements for the nonstationary Navier–Stokes problem. Numerical Methods for Partial Differential Equations, 2007, 23, 1167-1191.	3.6	14
52	A stabilised characteristic finite element method for transient Navier–Stokes equations. International Journal of Computational Fluid Dynamics, 2010, 24, 369-381.	1.2	14
53	A stabilized implicit fractional-step method for the time-dependent Navier–Stokes equations using equal-order pairs. Journal of Mathematical Analysis and Applications, 2012, 392, 209-224.	1.0	14
54	Analysis of the fractional Kawahara equation using an implicit fully discrete local discontinuous Galerkin method. Numerical Methods for Partial Differential Equations, 2013, 29, 1441-1458.	3.6	14

#	Article	IF	CITATIONS
55	Optimal convergence analysis of Crank–Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics. Computers and Mathematics With Applications, 2018, 76, 2678-2700.	2.7	14
56	Stability and Error Estimate of the Operator Splitting Method for the Phase Field Crystal Equation. Journal of Scientific Computing, 2021, 86, 1.	2.3	14
57	Numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the timeâ€dependent Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2010, 62, 647-659.	1.6	13
58	A coupled Newton iterative mixed finite element method for stationary conduction–convection problems. Computing (Vienna/New York), 2010, 89, 1-25.	4.8	13
59	Convergence analysis of an implicit fractional-step method for the incompressible Navier–Stokes equations. Applied Mathematical Modelling, 2011, 35, 5856-5871.	4.2	13
60	On error estimates of the fully discrete penalty method for the viscoelastic flow problem. International Journal of Computer Mathematics, 2011, 88, 2199-2220.	1.8	13
61	Stability and error analysis for spectral Galerkin method for the Navier–Stokes equations withL2 initial data. Numerical Methods for Partial Differential Equations, 2008, 24, 79-103.	3.6	12
62	Traveling wavefronts for a two-species ratio-dependent predator–prey system with diffusion terms and stage structure. Nonlinear Analysis: Real World Applications, 2009, 10, 1691-1701.	1.7	12
63	Using divergence free wavelets for the numerical solution of the 2-D stationary Navier–Stokes equations. Applied Mathematics and Computation, 2005, 163, 593-607.	2.2	11
64	Two-Level Newton's Method for Nonlinear Elliptic PDEs. Journal of Scientific Computing, 2013, 57, 124-145.	2.3	11
65	On an efficient second order backward difference Newton scheme for MHD system. Journal of Mathematical Analysis and Applications, 2018, 458, 676-714.	1.0	11
66	Numerical analysis of a modified finite element nonlinear Galerkin method. Numerische Mathematik, 2004, 97, 725-756.	1.9	10
67	Uniform H2-regularity of solution for the 2D Navier–Stokes/Cahn–Hilliard phase field model. Journal of Mathematical Analysis and Applications, 2016, 441, 815-829.	1.0	10
68	A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem. Journal of Scientific Computing, 2020, 84, 1.	2.3	10
69	Superconvergence of discontinuous Galerkin finite element method for the stationary Navier-Stokes equations. Numerical Methods for Partial Differential Equations, 2007, 23, 421-436.	3.6	9
70	First order decoupled method of the primitive equations of the ocean I: Time discretization. Journal of Mathematical Analysis and Applications, 2014, 412, 895-921.	1.0	9
71	The convergence of a new parallel algorithm for the Navier–Stokes equations. Nonlinear Analysis: Real World Applications, 2009, 10, 23-41. <mml:math <="" altimg="si72.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.7</td><td>8</td></mml:math>	1.7	8
	overflow="scroll"> <mml:mrow><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><n< td=""><td>nml:mn>1<</td><td>/mml:mn></td></n<></mml:mrow></mml:msup></mml:mrow>	nml:mn>1<	/mml:mn>
72	of center finite difference method based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si73.gif"</mml:math 	4.2	8
	overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><ml:mrow><m Applied Mathematical Modelling, 2014, 38, 5439-5455.</m </ml:mrow></mml:msub></mml:mrow>	\ml:mn>1<	/mml:mn>

#	Article	IF	CITATIONS
73	A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier–Stokes equations. Applied Mathematics and Computation, 2008, 202, 700-707.	2.2	7
74	Application of modified homotopy perturbation method for solving the augmented systems. Journal of Computational and Applied Mathematics, 2009, 231, 288-301.	2.0	7
75	Modified homotopy perturbation method for solving the Stokes equations. Computers and Mathematics With Applications, 2011, 61, 2262-2266.	2.7	7
76	A new defectâ€correction method for the stationary Navier–Stokes equations based on local Gauss integration. Mathematical Methods in the Applied Sciences, 2012, 35, 1033-1046.	2.3	7
77	Unconditional convergence and optimalL2error estimates of the Crank–Nicolson extrapolation FEM for the nonstationary Navier–Stokes equations. Computers and Mathematics With Applications, 2018, 75, 134-152.	2.7	7
78	Leastâ€squares virtual element method for the convectionâ€diffusionâ€reaction problem. International Journal for Numerical Methods in Engineering, 2021, 122, 2672-2693.	2.8	7
79	Uniform Stability and Convergence with Respect to \$\$(u , mu , s, 1-sigma)\$\$ of the Three Iterative Finite Element Solutions for the 3D Steady MHD Equations. Journal of Scientific Computing, 2022, 90, 1.	2.3	7
80	The existence of global attractors for semilinear parabolic equation in spaces. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 3541-3549.	1.1	6
81	An efficient and accurate fully discrete finite element method for unsteady incompressible Oldroyd fluids with large time step. International Journal for Numerical Methods in Fluids, 2016, 80, 375-394.	1.6	6
82	Weak Galerkin Finite Element Methods for the Simulation of Single-Phase Flow in Fractured Porous Media. Journal of Scientific Computing, 2018, 76, 1274-1300.	2.3	6
83	A Discontinuous Galerkin Method for the Coupled Stokes and Darcy Problem. Journal of Scientific Computing, 2020, 85, 1.	2.3	6
84	Discontinuous Galerkin method for the coupled Stokesâ€Biot model. Numerical Methods for Partial Differential Equations, 2021, 37, 383-405.	3.6	6
85	Decoupled modified characteristic finite element method with different subdomain time steps for nonstationary dual–porosity–Navier–Stokes model. Applied Numerical Mathematics, 2021, 166, 238-271.	2.1	6
86	A multi-level discontinuous Galerkin method for solving the stationary Navier–Stokes equations. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 1403-1411.	1.1	5
87	Crank–Nicolson Leap-Frog Time Stepping Decoupled Scheme for the Fluid–Fluid Interaction Problems. Journal of Scientific Computing, 2020, 84, 1.	2.3	5
88	Parametric iterative methods of second-order for solving nonlinear equation. Applied Mathematics and Computation, 2006, 173, 1060-1067.	2.2	4
89	Second order time–space iterative method for the stationary Navier–Stokes equations. Applied Mathematics Letters, 2016, 59, 79-86.	2.7	4
90	On the Euler implicit/explicit iterative scheme for the stationary Oldroyd fluid. Numerical Methods for Partial Differential Equations, 2018, 34, 906-937.	3.6	4

#	Article	IF	CITATIONS
91	A time filter method for solving the double-diffusive natural convection model. Computers and Fluids, 2022, 235, 105265.	2.5	4
92	Difference finite element method for the 3D steady Stokes equations. Applied Numerical Mathematics, 2022, 173, 418-433.	2.1	4
93	Uniform stability of spectral nonlinear Galerkin methods. Numerical Methods for Partial Differential Equations, 2004, 20, 723-741.	3.6	3
94	Combination of standard Galerkin and subspace methods for the timeâ€dependent Navierâ€Stokes equations with nonsmooth initial data. Numerical Methods for Partial Differential Equations, 2009, 25, 1009-1028.	3.6	3
95	Blow-up and global solutions for a class of nonlinear parabolic equations with different kinds of boundary conditions. Applied Mathematics and Computation, 2010, 217, 801-810.	2.2	3
96	Two-level stabilized finite element method for the transient Navier–Stokes equations. International Journal of Computer Mathematics, 2010, 87, 2341-2360.	1.8	3
97	Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations. Frontiers of Mathematics in China, 2013, 8, 837-854.	0.7	3
98	An iterative meshfree method for the elliptic monge-ampère equation in 2D. Numerical Methods for Partial Differential Equations, 2014, 30, 1507-1517.	3.6	3
99	Two robust virtual element methods for the Brinkman equations. Calcolo, 2021, 58, 1.	1.1	3
100	A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes. Advances in Computational Mathematics, 2021, 47, 1.	1.6	3
101	Block preconditioners for energy stable schemes ofÂmagnetohydrodynamics equations. Numerical Methods for Partial Differential Equations, 2023, 39, 501-522.	3.6	3
102	Two-level Galerkin–Lagrange multipliers method for the stationary Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2009, 230, 504-512.	2.0	2
103	Nonconforming spline collocation methods in irregular domains II: Error analysis. Numerical Methods for Partial Differential Equations, 2012, 28, 441-456.	3.6	2
104	Two-level multiscale finite element methods for the steady navier-stokes problem. Acta Mathematica Scientia, 2014, 34, 960-972.	1.0	2
105	On the solutions of the 3D steady and unsteady primitive equations of the ocean. Journal of Mathematical Analysis and Applications, 2020, 491, 124243.	1.0	2
106	Two-Level Schwarz Methods for a Discontinuous Galerkin Approximation of Elliptic Problems with Jump Coefficients. Journal of Scientific Computing, 2020, 84, 1.	2.3	2
107	A lowest equal-order stabilized mixed finite element method based on multiphysics approach for a poroelasticity model. Applied Numerical Mathematics, 2020, 153, 1-14.	2.1	2
108	Convergence analysis for a higher order scheme for the time-dependent Navier–Stokes equations. Applied Mathematics and Computation, 2012, 218, 8269-8278.	2.2	1

#	Article	IF	CITATIONS
109	Stability and convergence of semi-implicit time-stepping algorithm for stationary incompressible magnetohydrodynamics. Computers and Mathematics With Applications, 2019, 77, 1376-1395.	2.7	1
110	On the solution of the steady-state dual-porosity-Navier-Stokes fluid flow model with the Beavers-Joseph-Saffman interface condition. Journal of Mathematical Analysis and Applications, 2022, 505, 125577.	1.0	1
111	Asymptotic behavior of the Navier–Stokes flow in a general 2D domain. Applied Mathematics Letters, 2005, 18, 1170-1176.	2.7	0
112	A Mixed Discontinuous Galerkin Method for the Helmholtz Equation. Mathematical Problems in Engineering, 2020, 2020, 1-9.	1.1	0
113	Regularity results of solution uniform in time for complex Ginzburg-Landau equation. Frontiers of Mathematics in China, 2020, 15, 305-315.	0.7	0
114	A strongly conservative finite element method for the coupled Stokes and dual-porosity model. Journal of Computational and Applied Mathematics, 2021, 404, 113879.	2.0	0
115	A Parallel Robin–Robin Domain Decomposition Method based on Modified Characteristic FEMs for the Time-Dependent Dual-porosity-Navier–Stokes Model with the Beavers–Joseph Interface Condition. Journal of Scientific Computing, 2022, 90, 1.	2.3	0
116	Local tangential lifting virtual element method for the diffusion–reaction equation on the non-flat Voronoi discretized surface. Engineering With Computers, 0, , 1.	6.1	0