
## David Cornell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8809812/publications.pdf Version: 2024-02-01



DAVID CORNELL

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 2010, 270, 196-215.                                                                          | 1.4 | 351       |
| 2  | The Kibaran of southern Africa: Tectonic evolution and metallogeny. Ore Geology Reviews, 1994, 9, 131-160.                                                                                                                 | 1.1 | 155       |
| 3  | Ion-probe dating of 1.2Ga collision and crustal architecture in the Namaqua-Natal Province of southern Africa. Precambrian Research, 2007, 158, 79-92.                                                                     | 1.2 | 85        |
| 4  | Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Research, 2002, 118, 221-241.                                   | 1.2 | 78        |
| 5  | Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden,<br>SW Baltic Shield: constraints from a Mesoproterozoic granite intrusion. Precambrian Research, 1999,<br>98, 151-171.       | 1.2 | 75        |
| 6  | New Insights into the Geology of the Namaqua Tectonic Province, South Africa, from Ion Probe Dating of Detrital and Metamorphic Zircon. Journal of Geology, 2003, 111, 347-366.                                            | 0.7 | 70        |
| 7  | Rare earths from supernova to superconductor. Pure and Applied Chemistry, 1993, 65, 2453-2464.                                                                                                                             | 0.9 | 61        |
| 8  | Dating mafic-ultramafic intrusions by ion-microprobing contact-melt zircon: examples from SW<br>Sweden. Contributions To Mineralogy and Petrology, 2000, 139, 115-125.                                                     | 1.2 | 58        |
| 9  | Crustal evolution of the Rehoboth Province from Archaean to Mesoproterozoic times: Insights from the Rehoboth Basement Inlier. Precambrian Research, 2014, 240, 22-36.                                                     | 1.2 | 48        |
| 10 | The alkaline porphyry associated Yao?an gold deposit, Yunnan, China: rare earth element and stable<br>isotope evidence for magmatic-hydrothermal ore formation. Mineralium Deposita, 2004, 39, 21-30.                      | 1.7 | 43        |
| 11 | A collision-related pressure-temperature-time path for Prieska copper mine, namaqua-natal tectonic<br>province, South Africa. Precambrian Research, 1992, 59, 43-71.                                                       | 1.2 | 42        |
| 12 | Three Compositional Varieties of Rare-Earth Element Ore: Eudialyte-Group Minerals from the Norra<br>Kä Alkaline Complex, Southern Sweden. Minerals (Basel, Switzerland), 2013, 3, 94-120.                                  | 0.8 | 41        |
| 13 | Ion probe zircon dating of metasediments from the Areachap and Kakamas Terranes, Namaqua-Natal<br>Province and the stratigraphic integrity of the Areachap Group. South African Journal of Geology,<br>2007, 110, 575-584. | 0.6 | 39        |
| 14 | A New Chronostratigraphic Paradigm for the Age and Tectonic History of the Mesoproterozoic<br>Bushmanland Ore District, South Africa. Economic Geology, 2009, 104, 385-404.                                                | 1.8 | 39        |
| 15 | REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China. Ore Geology Reviews, 2002, 19, 69-78.                                    | 1.1 | 36        |
| 16 | lon probe dating of a migmatite in SW Sweden: the fate of zircon in crustal processes. Precambrian<br>Research, 2004, 130, 251-266.                                                                                        | 1.2 | 34        |
| 17 | ZIRCON U-PB EMPLACEMENT AND ND-HF CRUSTAL RESIDENCE AGES OF THE STRAUSSBURG GRANITE AND FRIERSDALE CHARNOCKITE IN THE NAMAQUA-NATAL PROVINCE, SOUTH AFRICA. South African Journal of Geology, 2012, 115, 465-484.          | 0.6 | 33        |
| 18 | Rare earth element and isotopic evidence for the genesis of the Prieska massive sulfide deposit, South<br>Africa. Economic Geology, 1989, 84, 49-63.                                                                       | 1.8 | 32        |

DAVID CORNELL

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Eclogites in the central part of the Sveconorwegian Eastern Segment of the Baltic Shield: Support for an extensive eclogite terrane. Gff, 2005, 127, 221-232.                                                                   | 0.4 | 32        |
| 20 | Geochronology of Mesoproterozoic hybrid intrusions in the Konkiep Terrane, Namibia, from passive<br>to active continental margin in the Namaqua-Natal Wilson Cycle. Precambrian Research, 2015, 265,<br>166-188.                | 1.2 | 32        |
| 21 | Sm-Nd data for granitoids across the Namaqua sector of the Namaqua-Natal Province, South Africa.<br>Geological Society Special Publication, 2009, 323, 219-230.                                                                 | 0.8 | 31        |
| 22 | Three episodes of crustal development in the Rehoboth Province, Namibia. Geological Society Special Publication, 2011, 357, 27-47.                                                                                              | 0.8 | 30        |
| 23 | Igneous and metamorphic geochronologic evolution of granitoids in the central Eastern Segment,<br>southern Sweden. International Geology Review, 2012, 54, 509-546.                                                             | 1.1 | 30        |
| 24 | Eclogite-hosting metapelites from the Pohorje Mountains (Eastern Alps): P-T evolution, zircon geochronology and tectonic implications. European Journal of Mineralogy, 2010, 21, 1191-1212.                                     | 0.4 | 29        |
| 25 | Geochronological constraints on the Hartbees River Thrust and Augrabies Nappe: New insights into<br>the assembly of the Mesoproterozoic Namaqua-Natal Province of Southern Africa. Precambrian<br>Research, 2015, 265, 150-165. | 1.2 | 29        |
| 26 | A volcanic-exhalative origin for the world's largest (Kalahari) Manganese field. Mineralium Deposita,<br>1995, 30, 146.                                                                                                         | 1.7 | 28        |
| 27 | Evidence from Dwyka tillite cobbles of Archaean basement beneath the Kalahari sands of southern<br>Africa. Lithos, 2011, 125, 482-502.                                                                                          | 0.6 | 26        |
| 28 | Age and tectonic setting of BocÅŸa and Ocna de Fier - Dognecea granodiorites (southwest Romania) and<br>of associated skarn mineralisation. Mineralium Deposita, 1999, 34, 743-753.                                             | 1.7 | 23        |
| 29 | Geochemistry and Ar–Ar muscovite ages of the Daraban Leucogranite, Mawat Ophiolite, northeastern<br>Iraq: Implications for Arabia–Eurasia continental collision. Journal of Asian Earth Sciences, 2014, 86,<br>151-165.         | 1.0 | 22        |
| 30 | Geochemistry and metamorphism of the Prieska Zn-Cu deposit, South Africa. Economic Geology, 1989, 84, 34-48.                                                                                                                    | 1.8 | 17        |
| 31 | Evidence of kimberlite-grospydite reaction. Contributions To Mineralogy and Petrology, 1974, 45, 153-160.                                                                                                                       | 1.2 | 16        |
| 32 | Determination of organotin compounds by capillary supercritical fluid chromatography with<br>inductively coupled plasma mass spectrometric detection. Journal of Chromatography A, 1994, 683,<br>223-231.                       | 1.8 | 15        |
| 33 | On-line capillary supercritical fluid chromatography-inductively coupled plasma mass spectrometry for the analysis of organometallic compounds. Journal of High Resolution Chromatography, 1995, 18, 33-37.                     | 2.0 | 15        |
| 34 | Character and origin of variably deformed granitoids in central southern Sweden: implications from geochemistry and Nd isotopes. Geological Journal, 2011, 46, 597-618.                                                         | 0.6 | 15        |
| 35 | U–Pb zircon geochronology of the Daraban leucogranite, Mawat ophiolite, Northeastern Iraq: A<br>record of the subduction to collision history for the Arabia–Eurasia plates. Island Arc, 2017, 26,<br>e12188.                   | 0.5 | 15        |
| 36 | Precise microbeam dating defines three Archaean granitoid suites at the southwestern margin of the<br>Kaapvaal Craton. Precambrian Research, 2018, 304, 21-38.                                                                  | 1.2 | 14        |

DAVID CORNELL

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Feasibility of total-rock Pbî—,Pb dating of metamorphosed banded iron formation; The Marydale Group, southern Africa. Chemical Geology: Isotope Geoscience Section, 1986, 59, 255-271.                                            | 0.7 | 13        |
| 38 | Petrology and geochronology of low-pressure mafic granulites in the Marydale Group, South Africa.<br>Lithos, 1989, 22, 287-303.                                                                                                   | 0.6 | 13        |
| 39 | Age, tectonic setting and petrogenesis of the Habo Volcanic Suite: Evidence for an active continental margin setting for the Transscandinavian Igneous Belt. Gff, 2008, 130, 123-138.                                             | 0.4 | 13        |
| 40 | Age and tectonic significance of the Banana Beach Gneiss, KwaZulu-Natal South Coast, South Africa.<br>South African Journal of Geology, 2006, 109, 335-340.                                                                       | 0.6 | 12        |
| 41 | A NEW CHRONOSTRATIGRAPHIC PARADIGM FOR THE AGE AND TECTONIC HISTORY OF THE<br>MESOPROTEROZOIC BUSHMANLAND ORE DISTRICT, SOUTH AFRICAA REPLY. Economic Geology, 2009, 104,<br>1282-1285.                                           | 1.8 | 12        |
| 42 | lon microprobe discovery of Archaean and Early Proterozoic zircon xenocrysts in southwest Sweden.<br>Gff, 2000, 122, 377-383.                                                                                                     | 0.4 | 11        |
| 43 | The Plat Sjambok Anorthosite and its tonalitic country rocks: Mesoproterozoic pre-tectonic<br>intrusions in the Kaaien Terrane, Namaqua–Natal Province, southern Africa. International Geology<br>Review, 2013, 55, 1471-1489.    | 1.1 | 11        |
| 44 | A post-Transvaal age for the Marydale Formation, Kheis Group, Southern Africa. Earth and Planetary<br>Science Letters, 1977, 37, 117-123.                                                                                         | 1.8 | 10        |
| 45 | P-T conditions during skarn formation in the Ocna de Fier ore district, Romania. Mineralium Deposita,<br>1999, 34, 730-742.                                                                                                       | 1.7 | 10        |
| 46 | Geochronology and tectonic evolution of the Hohewarte Complex, central Namibia: New insights in<br>Paleoproterozoic to Early Neoproterozoic crustal accretion processes. Journal of African Earth<br>Sciences, 2014, 99, 228-244. | 0.9 | 9         |
| 47 | Nature and stratigraphic position of the 1614 Ma Delsjön augen granite-gneiss in the Median Segment of south-west Sweden. Gff, 2006, 128, 21-32.                                                                                  | 0.4 | 8         |
| 48 | Mg-rich staurolite and kyanite inclusions in metabasic garnet amphibolite from the Swedish Eastern<br>Segment: evidence for a Mesoproterozoic subduction event. European Journal of Mineralogy, 2011, 23,<br>609-631.             | 0.4 | 8         |
| 49 | Baddeleyite geochronology and geochemistry of mafic cobbles from the Dwyka diamictite: New insights into the sub-Kalahari basement, South Africa. Lithos, 2011, 126, 307-320.                                                     | 0.6 | 8         |
| 50 | Molybdenum mineralization at Alpeiner Scharte, Tyrol (Austria): results of in-situ U?Pb zircon and<br>Re?Os molybdenite dating. Mineralogy and Petrology, 2004, 82, 33-64.                                                        | 0.4 | 7         |
| 51 | Documentation of a hydrous ultramafic magma intrusion in the 1.62 Ga crust of southern Sweden.<br>Gff, 2000, 122, 251-255.                                                                                                        | 0.4 | 5         |
| 52 | Development of living organisms on the lava-water interface of Palaeoproterozoic Ongeluk lavas of<br>South Africa. , 2008, , .                                                                                                    |     | 2         |