Debabrata Sikdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8808438/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective thermal emitters for high-performance all-day radiative cooling. Journal Physics D: Applied Physics, 2022, 55, 085504.	2.8	9
2	Multilayer thin-film based nanophotonic windows: static versus electrotunable design. Journal of Optics (United Kingdom), 2022, 24, 024002.	2.2	5
3	Cell Sheetâ€Like Soft Nanoreactor Arrays. Advanced Materials, 2022, 34, e2105630.	21.0	4
4	Nanophotonics-Enabled High-Efficiency Selective Solar Absorbers for Waste Heat Management. IEEE Nanotechnology Magazine, 2022, 21, 131-136.	2.0	4
5	Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms. ACS Sensors, 2022, 7, 622-631.	7.8	12
6	Infrared-blocking plasmonic meta-glass for energy-saving passive windows. Optics Letters, 2022, 47, 2242.	3.3	4
7	Parallel directional coupler based dual-polarization electro-absorption modulator using epsilon near-zero material. Journal Physics D: Applied Physics, 2022, 55, 135107.	2.8	9
8	Tunable terahertz absorption modulation in graphene nanoribbon-assisted dielectric metamaterial. Journal Physics D: Applied Physics, 2022, 55, 285101.	2.8	7
9	Coupling-assisted Epsilon-Near-Zero Material based Energy-efficient Electro-Absorption Modulator. , 2022, , .		2
10	Vanadium Dioxide Assisted Thermo-optic Perfect Absorbers for Optical Switching. , 2022, , .		1
11	Nanophotonic All-weather Windows for Energy-efficient Smart Buildings. , 2021, , .		0
12	Polarization- and angle-insensitive ultrabroadband perfect metamaterial absorber for thermophotovoltaics. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 327.	2.1	30
13	Energy-saving all-weather window based on selective filtering of solar spectral radiation. Applied Optics, 2021, 60, 1315.	1.8	19
14	Design of electrotunable all-weather smart windows. Solar Energy Materials and Solar Cells, 2021, 222, 110921.	6.2	30
15	Cross–Ring Based Broadband Plasmonic Metamaterial Absorbers for Boosting Silicon Solar Cell Efficiency. , 2021, , .		1
16	Polarization-insensitive Electro-tunable Broadband Plasmonic Metamaterial Absorber for Amplitude Modulation. , 2021, , .		4
17	Spectrally Selective Nanophotonic Windows for Aiding Photosynthesis in Greenhouses. , 2021, , .		0
18	Gold Nanopolyhedron-Based Superlattice Sheets as Flexible Surface-Enhanced Raman Scattering Sensors for Detection of 4-Aminothiophenol. ACS Applied Nano Materials, 2021, 4, 12498-12505.	5.0	8

DEBABRATA SIKDAR

#	Article	IF	CITATIONS
19	Guided-Mode Resonance based All-dielectric Optical Intensity Modulator. , 2021, , .		4
20	Two-Dimensional Nanoassemblies from Plasmonic Matryoshka Nanoframes. Journal of Physical Chemistry C, 2021, 125, 27753-27762.	3.1	5
21	Electrotunable Nanoplasmonics for Amplified Surface Enhanced Raman Spectroscopy. ACS Nano, 2020, 14, 328-336.	14.6	32
22	Nanoparticle meta-grid for enhanced light extraction from light-emitting devices. Light: Science and Applications, 2020, 9, 122.	16.6	9
23	Self-assembling two-dimensional nanophotonic arrays for reflectivity-based sensing. Chemical Science, 2020, 11, 9563-9570.	7.4	8
24	Multiscale Patterned Plasmonic Arrays for Highly Sensitive and Uniform SERS Detection. Advanced Materials Interfaces, 2020, 7, 2000248.	3.7	7
25	Low-power design of electrotunable color filters and optical switches. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3865.	2.1	14
26	Auxetic Thermoresponsive Nanoplasmonic Optical Switch. ACS Applied Materials & Interfaces, 2019, 11, 22754-22760.	8.0	13
27	Editorial: A special issue on plasmonic metamaterials. Journal of Physics Condensed Matter, 2019, 31, 310401.	1.8	1
28	2D Freestanding Janus Gold Nanocrystal Superlattices. Advanced Materials, 2019, 31, e1900989.	21.0	38
29	Site-specific Ag coating on concave Au nanoarrows by controlling the surfactant concentration. Nanoscale Horizons, 2019, 4, 940-946.	8.0	11
30	Ultra-broadband Wide-Angle Metallo-Dielectric Metamaterial Absorber for Solar Energy Harvesting. , 2019, , .		4
31	An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials. Nanophotonics, 2019, 8, 2279-2290.	6.0	12
32	Optical response of electro-tuneable 3D superstructures of plasmonic nanoparticles self-assembling on transparent columnar electrodes. Optics Express, 2019, 27, 26483.	3.4	5
33	Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer. Scientific Reports, 2018, 8, 565.	3.3	19
34	Shape Transformation of Constituent Building Blocks within Self-Assembled Nanosheets and Nano-origami. ACS Nano, 2018, 12, 1014-1022.	14.6	18
35	A Tunable Nanoplasmonic Mirror at an Electrochemical Interface. ACS Photonics, 2018, 5, 4604-4616.	6.6	23
36	Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters. Faraday Discussions, 2017, 199, 585-602.	3.2	10

Debabrata Sikdar

#	Article	IF	CITATIONS
37	Electrotunable nanoplasmonic liquid mirror. Nature Materials, 2017, 16, 1127-1135.	27.5	115
38	Electrovariable nanoplasmonics: general discussion. Faraday Discussions, 2017, 199, 603-613.	3.2	1
39	Self-Assembled Plasmonic Pyramids from Anisotropic Nanoparticles for High-Efficient SERS. Journal of Analysis and Testing, 2017, 1, 335-343.	5.1	7
40	MoS\$_2\$ Broadband Coherent Perfect Absorber for Terahertz Waves. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	31
41	Tuneable 2D self-assembly of plasmonic nanoparticles at liquid liquid interfaces. Nanoscale, 2016, 8, 19229-19241.	5.6	56
42	Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials. Physical Chemistry Chemical Physics, 2016, 18, 20486-20498.	2.8	18
43	Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces. Scientific Reports, 2016, 6, 33712.	3.3	39
44	Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Research, 2016, 9, 415-423.	10.4	31
45	Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders. ACS Nano, 2016, 10, 967-976.	14.6	101
46	Polarization multiplexed interrogation technique for FBG sensor array. Photonic Sensors, 2015, 5, 193-201.	5.0	2
47	SERS: Ultrathin Plasmene Nanosheets as Soft and Surface-Attachable SERS Substrates with High Signal Uniformity (Advanced Optical Materials 7/2015). Advanced Optical Materials, 2015, 3, 918-918.	7.3	3
48	Dualâ€Coded Plasmene Nanosheets as Nextâ€Generation Anticounterfeit Security Labels. Advanced Optical Materials, 2015, 3, 1710-1717.	7.3	78
49	Ultrathin Plasmene Nanosheets as Soft and Surfaceâ€Attachable SERS Substrates with High Signal Uniformity. Advanced Optical Materials, 2015, 3, 919-924.	7.3	66
50	Substrate-Mediated Broadband Tunability in Plasmonic Resonances of Metal Nanoantennas on Finite High-Permittivity Dielectric Substrate. Plasmonics, 2015, 10, 1663-1673.	3.4	13
51	Gold Nanoparticles with Gain-assisted Coating for Ultra-sensitive Biomedical Sensing. Plasmonics, 2015, 10, 881-886.	3.4	11
52	Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7, 3445-3452.	5.6	42
53	Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale, 2015, 7, 2862-2868.	5.6	153
54	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015, 7, e204-e204.	7.9	14

DEBABRATA SIKDAR

#	Article	lF	CITATIONS
55	Large-Scale Self-Assembly and Stretch-Induced Plasmonic Properties of Core–Shell Metal Nanoparticle Superlattice Sheets. Journal of Physical Chemistry C, 2014, 118, 26816-26824.	3.1	42
56	Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres. Plasmonics, 2014, 9, 659-672.	3.4	28
57	Investigation of RZ and NRZ pulse shape for optimum Duobinary transmission at 40 Gbps. Optik, 2013, 124, 1148-1151.	2.9	5
58	Investigation of modulator chirp and extinction ratio in different RZ- and NRZ duobinary transmitter modules for performance optimization. Optik, 2013, 124, 1411-1414.	2.9	1
59	Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomedical Optics Express, 2013, 4, 15.	2.9	41
60	Simulation and performance analysis of duobinary 40 Gbps optical link. Journal of Modern Optics, 2012, 59, 903-911.	1.3	10
61	Optimum dispersion map profile for a stable DM soliton system. Journal of Modern Optics, 2012, 59, 1396-1405.	1.3	1
62	SPM induced limitations for 40 Gbps chirped Gaussian pulses in optical channel. Optik, 2012, 123, 1482-1485.	2.9	2