Jennifer Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8807984/publications.pdf

Version: 2024-02-01

361045 344852 1,772 36 20 citations h-index papers

g-index 38 38 38 2636 docs citations times ranked citing authors all docs

36

#	Article	IF	CITATIONS
1	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
2	Targeting DnaN for tuberculosis therapy using novel griselimycins. Science, 2015, 348, 1106-1112.	6.0	262
3	Cystobactamids: Myxobacterial Topoisomerase Inhibitors Exhibiting Potent Antibacterial Activity. Angewandte Chemie - International Edition, 2014, 53, 14605-14609.	7.2	145
4	BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL- $1\hat{l}^2$ Maturation in Macrophages. Cell Reports, 2018, 25, 2354-2368.e5.	2.9	74
5	Synthesis and Biological Evaluation of Pretubulysin and Derivatives. European Journal of Organic Chemistry, 2009, 2009, 6367-6378.	1.2	66
6	Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Scientific Reports, 2016, 6, 24648.	1.6	66
7	The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nature Communications, 2017, 8, 1529.	5 . 8	66
8	Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity. Journal of the American Chemical Society, 2015, 137, 7692-7705.	6.6	57
9	Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Research in Microbiology, 2019, 170, 74-79.	1.0	48
10	Rickenyls A–E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry, 2015, 118, 68-73.	1.4	46
11	Tools for studying the metabolism of new psychoactive substances for toxicological screening purposes $\hat{a} \in A$ comparative study using pooled human liver S9, HepaRG cells, and zebrafish larvae. Toxicology Letters, 2019, 305, 73-80.	0.4	40
12	Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Scientific Reports, 2016, 6, 21066.	1.6	34
13	Pretubulysin: From Hypothetical Biosynthetic Intermediate to Potential Lead in Tumor Therapy. PLoS ONE, 2012, 7, e37416.	1.1	34
14	Structure and Biosynthesis of Crocagins: Polycyclic Posttranslationally Modified Ribosomal Peptides from <i>Chondromyces crocatus</i> . Angewandte Chemie - International Edition, 2017, 56, 7407-7410.	7.2	32
15	How to Study the Metabolism of New Psychoactive Substances for the Purpose of Toxicological Screenings—A Follow-Up Study Comparing Pooled Human Liver S9, HepaRG Cells, and Zebrafish Larvae. Frontiers in Chemistry, 2020, 8, 539.	1.8	31
16	PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102125.	1.7	26
17	Biosynthesis of the <i>Klebsiella oxytoca</i> Pathogenicity Factor Tilivalline: Heterologous Expression, <i>in Vitro</i> Biosynthesis, and Inhibitor Development. ACS Chemical Biology, 2018, 13, 812-819.	1.6	24
18	Engineering Atypical Tetracycline Formation in <i>Amycolatopsis sulphurea</i> for the Production of Modified Chelocardin Antibiotics. ACS Chemical Biology, 2019, 14, 468-477.	1.6	24

#	Article	IF	CITATIONS
19	Discovery and Biological Activity of New Chondramides from <i>Chondromyces</i> sp ChemBioChem, 2013, 14, 1573-1580.	1.3	23
20	Isolation, Structure Elucidation, and (Bio)Synthesis of Haprolid, a Cellâ€Typeâ€Specific Myxobacterial Cytotoxin. Angewandte Chemie - International Edition, 2016, 55, 10113-10117.	7.2	22
21	Heterologous expression of an orphan NRPS gene cluster from Paenibacillus larvae in Escherichia coli revealed production of sevadicin. Journal of Biotechnology, 2015, 194, 112-114.	1.9	19
22	Novel and revisited approaches in antituberculosis drug discovery. Current Opinion in Biotechnology, 2017, 48, 94-101.	3.3	19
23	Drug Administration Routes Impact the Metabolism of a Synthetic Cannabinoid in the Zebrafish Larvae Model. Molecules, 2020, 25, 4474.	1.7	19
24	The glucocorticoidâ€induced leucine zipper mediates statinâ€induced muscle damage. FASEB Journal, 2020, 34, 4684-4701.	0.2	19
25	Toxicokinetics and toxicodynamics of the fentanyl homologs cyclopropanoyl-1-benzyl-4A-fluoro-4-anilinopiperidine and furanoyl-1-benzyl-4-anilinopiperidine. Archives of Toxicology, 2020, 94, 2009-2025.	1.9	19
26	Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies. Current Topics in Microbiology and Immunology, 2016, 398, 339-363.	0.7	18
27	Aurantimycin resistance genes contribute to survival of <i>Listeria monocytogenes </i> during life in the environment. Molecular Microbiology, 2019, 111, 1009-1024.	1.2	16
28	Activation of the NLRP3 Inflammasome by Hyaboron, a New Asymmetric Boron-Containing Macrodiolide from the Myxobacterium Hyalangium minutum. ACS Chemical Biology, 2018, 13, 2981-2988.	1.6	15
29	Semisynthesis and biological evaluation of amidochelocardin derivatives as broad-spectrum antibiotics. European Journal of Medicinal Chemistry, 2020, 188, 112005.	2.6	14
30	Zebrafish: An Attractive Model to Study Staphylococcus aureus Infection and Its Use as a Drug Discovery Tool. Pharmaceuticals, 2021, 14, 594.	1.7	12
31	Octapeptins: Lipopeptide Antibiotics against Multidrug-Resistant Superbugs. Cell Chemical Biology, 2018, 25, 351-353.	2.5	11
32	Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin. Antibiotics, 2020, 9, 619.	1.5	10
33	Expanding the Myxochelin Natural Product Family by Nicotinic Acid Containing Congeners. Molecules, 2021, 26, 4929.	1.7	5
34	MyxopyroninÂB inhibits growth of a Fidaxomicin-resistant ClostridioidesÂdifficile isolate and interferes with toxin synthesis. Gut Pathogens, 2022, 14, 4.	1.6	5
35	Induction of Liver Size Reduction in Zebrafish Larvae by the Emerging Synthetic Cannabinoid 4F-MDMB-BINACA and Its Impact on Drug Metabolism. Molecules, 2022, 27, 1290.	1.7	5
36	Metabolic Profiling to Determine Bactericidal or Bacteriostatic Effects of New Natural Products using Isothermal Microcalorimetry. Journal of Visualized Experiments, 2020, , .	0.2	2