
Elisabetta Orlandini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8807620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New N-arylsulfonyl-N-alkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP-2). Bioorganic and Medicinal Chemistry, 2004, 12, 2441-2450.	3.0	79
2	<i>N-O-</i> Isopropyl Sulfonamido-Based Hydroxamates: Design, Synthesis and Biological Evaluation of Selective Matrix Metalloproteinase-13 Inhibitors as Potential Therapeutic Agents for Osteoarthritis. Journal of Medicinal Chemistry, 2009, 52, 4757-4773.	6.4	60
3	Structural Insights on Carbonic Anhydrase Inhibitory Action, Isoform Selectivity, and Potency of Sulfonamides and Coumarins Incorporating Arylsulfonylureido Groups. Journal of Medicinal Chemistry, 2014, 57, 9152-9167.	6.4	55
4	<i>N</i> - <i>O</i> -Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity. Journal of Medicinal Chemistry, 2015, 58, 7224-7240.	6.4	54
5	Design, Synthesis, Biological Evaluation, and NMR Studies of a New Series of Arylsulfones As Selective and Potent Matrix Metalloproteinase-12 Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 6347-6361.	6.4	49
6	Inhibition of metalloproteinases derived from tumours: new insights in the treatment of human glioblastoma. Neuroscience, 2010, 168, 514-522.	2.3	49
7	Carbonic anhydrase and matrix metalloproteinase inhibitors. Inhibition of human tumor-associated isozymes IX and cytosolic isozyme I and II with sulfonylated hydroxamates. Bioorganic and Medicinal Chemistry, 2007, 15, 2298-2311.	3.0	44
8	Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer's Disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 211-226.	5.2	39
9	N-i-Propoxy-N-biphenylsulfonylaminobutylhydroxamic acids as potent and selective inhibitors of MMP-2 and MT1-MMP. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1321-1326.	2.2	38
10	Arylsulfonamide inhibitors of aggrecanases as potential therapeutic agents for osteoarthritis: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2013, 62, 379-394.	5.5	38
11	Potent Arylsulfonamide Inhibitors of Tumor Necrosis Factor-α Converting Enzyme Able to Reduce Activated Leukocyte Cell Adhesion Molecule Shedding in Cancer Cell Models. Journal of Medicinal Chemistry, 2010, 53, 2622-2635.	6.4	37
12	NewN-n-Propyl-Substituted 3-Aryl- and 3-Cyclohexylpiperidines as Partial Agonists at the D4Dopamine Receptor. Journal of Medicinal Chemistry, 2003, 46, 161-168.	6.4	36
13	Sugarâ€Based Arylsulfonamide Carboxylates as Selective and Waterâ€Soluble Matrix Metalloproteinaseâ€12 Inhibitors. ChemMedChem, 2016, 11, 1626-1637.	3.2	36
14	Synthesis of heteroaromatic analogues of (2-aryl-1-cyclopentenyl-1-alkylidene)-(arylmethyloxy)amine COX-2 inhibitors: effects on the inhibitory activity of the replacement of the cyclopentene central core with pyrazole, thiophene or isoxazole ring. European Journal of Medicinal Chemistry, 2003, 38, 157-168.	5.5	35
15	Tricyclic Sulfonamides Incorporating Benzothiopyrano[4,3-c]pyrazole and Pyridothiopyrano[4,3-c]pyrazole Effectively Inhibit α- and β-Carbonic Anhydrase: X-ray Crystallography and Solution Investigations on 15 Isoforms. Journal of Medicinal Chemistry, 2012, 55, 9619-9629.	6.4	35
16	Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: analysis of structural data for future drug design. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1145-1162.	5.2	35
17	Novel Transthyretin Amyloid Fibril Formation Inhibitors: Synthesis, Biological Evaluation, and X-Ray Structural Analysis. PLoS ONE, 2009, 4, e6290.	2.5	34
18	Development of Thioaryl-Based Matrix Metalloproteinase-12 Inhibitors with Alternative Zinc-Binding Groups: Synthesis, Potentiometric, NMR, and Crystallographic Studies. Journal of Medicinal Chemistry, 2018, 61, 4421-4435.	6.4	34

#	Article	IF	CITATIONS
19	Synthesis and COX-2 inhibitory properties of N-phenyl- and N-benzyl-substituted amides of 2-(4-methylsulfonylphenyl)cyclopent-1-ene-1-carboxylic acid and of their pyrazole, thiophene and isoxazole analogs. Il Farmaco, 2004, 59, 25-31.	0.9	33
20	Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies. Journal of Synchrotron Radiation, 2017, 24, 42-52.	2.4	27
21	Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules, 2021, 26, 6380.	3.8	27
22	Copper mediated amyloid- \hat{l}^2 binding to Transthyretin. Scientific Reports, 2018, 8, 13744.	3.3	26
23	Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals, 2021, 14, 86.	3.8	26
24	TTR Fibril Formation Inhibitors: Is there a SAR?. Current Medicinal Chemistry, 2012, 19, 2356-2379.	2.4	25
25	Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues. European Journal of Medicinal Chemistry, 2017, 138, 890-899.	5.5	24
26	A new development of matrix metalloproteinase inhibitors: twin hydroxamic acids as potent inhibitors of MMPs. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2311-2314.	2.2	23
27	Molecular design, synthesis, and antiinflammatory activity of a series of .betaaminoxypropionic acids. Journal of Medicinal Chemistry, 1990, 33, 1423-1430.	6.4	22
28	Synthèses et propriétés antimicrobiennes de (E)-3-aminoxy-2-méthoxyimino propionyl pénicillines et céphalosporines. European Journal of Medicinal Chemistry, 1990, 25, 227-233.	5.5	21
29	Synthesis and antimicrobial properties of substituted .betaaminoxypropionyl penicillins and cephalosporins. Journal of Medicinal Chemistry, 1989, 32, 1398-1401.	6.4	20
30	Selective Arylsulfonamide Inhibitors of ADAM-17: Hit Optimization and Activity in Ovarian Cancer Cell Models. Journal of Medicinal Chemistry, 2013, 56, 8089-8103.	6.4	19
31	A new crystal form of human transthyretin obtained with a curcumin derived ligand. Journal of Structural Biology, 2016, 194, 8-17.	2.8	18
32	Synthesis and aldose reductase inhibitory activity of N-(arylsulfonyl)- and N-(aroyl)-N-(arylmethyloxy)glycines. European Journal of Medicinal Chemistry, 1994, 29, 787-794.	5.5	17
33	Synthesis and Preliminary Evaluation in Tumor Bearing Mice of New ¹⁸ F-Labeled Arylsulfone Matrix Metalloproteinase Inhibitors as Tracers for Positron Emission Tomography. Journal of Medicinal Chemistry, 2013, 56, 2676-2689.	6.4	17
34	A new D2 dopamine receptor agonist allosterically modulates A2A adenosine receptor signalling by interacting with the A2A/D2 receptor heteromer. Cellular Signalling, 2012, 24, 951-960.	3.6	16
35	Tafamidis (Vyndaqel): A Light for FAP Patients. ChemMedChem, 2013, 8, 1617-1619.	3.2	16
36	Targeting Different Transthyretin Binding Sites with Unusual Natural Compounds. ChemMedChem, 2016, 11, 1865-1874.	3.2	16

ELISABETTA ORLANDINI

#	Article	IF	CITATIONS
37	Synthesis, inhibitory activity towards human leukocyte elastase and molecular modelling studies of 1-carbamoyl-4-methyleneaminoxyazetidinones. European Journal of Medicinal Chemistry, 2000, 35, 53-67.	5.5	15
38	Synthesis, molecular docking and binding studies of selective serotonin transporter inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 825-834.	5.5	15
39	Synthesis and structural analysis of halogen substituted fibril formation inhibitors of Human Transthyretin (TTR). Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 40-51.	5.2	15
40	Matrix metalloproteinase-12 inhibitors: synthesis, structure-activity relationships and intestinal absorption of novel sugar-based biphenylsulfonamide carboxylates. Bioorganic and Medicinal Chemistry, 2018, 26, 5804-5815.	3.0	14
41	(E)-[2-(4-Methylsulphonylphenyl)-1-cyclopentenyl-1-methyliden](arylmethyloxy)amines. Methyleneaminoxymethyl (MAOM) analogues of diarylcyclopentenyl cyclooxygenase-2 inhibitors: synthesis and biological properties. European Journal of Medicinal Chemistry, 2002, 37, 391-398.	5.5	13
42	Bifunctional Inhibitors as a New Tool To Reduce Cancer Cell Invasion by Impairing MMP-9 Homodimerization. ACS Medicinal Chemistry Letters, 2017, 8, 293-298.	2.8	13
43	N -(Aroyl)- N -(arylmethyloxy)-α-alanines: Selective inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2017, 25, 3068-3076.	3.0	13
44	Synthesis and investigation of polyhydroxylated pyrrolidine derivatives as novel chemotypes showing dual activity as glucosidase and aldose reductase inhibitors. Bioorganic Chemistry, 2019, 92, 103298.	4.1	13
45	N-n-Propyl-Substituted 3-(Dimethylphenyl)piperidines Display Novel Discriminative Properties between Dopamine Receptor Subtypes:Â Synthesis and Receptor Binding Studies1. Journal of Medicinal Chemistry, 1998, 41, 4933-4938.	6.4	12
46	Activation of carbonic anhydrases from human brain by amino alcohol oxime ethers: towards human carbonic anhydrase VII selective activators. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 48-57.	5.2	12
47	Neuroglobin and neuroprotection: the role of natural and synthetic compounds in neuroglobin pharmacological induction. Neural Regeneration Research, 2021, 16, 2353.	3.0	12
48	Focus on Human Monoamine Transporter Selectivity. New Human DAT and NET Models, Experimental Validation, and SERT Affinity Exploration. ACS Chemical Neuroscience, 2020, 11, 3214-3232.	3.5	12
49	Synthesis, antiinflammatory activity and molecular orbital studies of a series of benzylideneaminoxypropionic acids substituted on the phenyl ring. European Journal of Medicinal Chemistry, 1994, 29, 33-39.	5.5	11
50	Nature-Inspired O-Benzyl Oxime-Based Derivatives as New Dual-Acting Agents Targeting Aldose Reductase and Oxidative Stress. Biomolecules, 2022, 12, 448.	4.0	11
51	Synthesis and α-adrenergic activity of 2- and 6-methyl-substituted (3,4-dihydroxyphenyl)-3-piperidinols. European Journal of Medicinal Chemistry, 1997, 32, 231-240.	5.5	10
52	X-ray crystal structure and activity of fluorenyl-based compounds as transthyretin fibrillogenesis inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 824-833.	5.2	10
53	Application of PROTAC strategy to TTR-Aβ protein-protein interaction for the development of Alzheimer's disease drugs. Neural Regeneration Research, 2021, 16, 1554.	3.0	10
54	Role of the benzylic hydroxyl group of adrenergic catecholamines in eliciting α-adrenergic activity. Synthesis and α1- and α2-adrenergic activity of 3-phenyl-3-piperidinols and their desoxy analogs. European Journal of Medicinal Chemistry, 1995, 30, 869-880.	5.5	9

Elisabetta Orlandini

#	Article	IF	CITATIONS
55	Design, synthesis and biological evaluation of bifunctional inhibitors of membrane type 1 matrix metalloproteinase (MT1-MMP). Bioorganic and Medicinal Chemistry, 2019, 27, 196-207.	3.0	9
56	Physiological Metals Can Induce Conformational Changes in Transthyretin Structure: Neuroprotection or Misfolding Induction?. Crystals, 2021, 11, 354.	2.2	9
57	Synthesis and evaluation of the pharmacological activity of rigid analogs of sympathomimetic catecholamines derived from bicyclo[2.2.1]heptane. Journal of Medicinal Chemistry, 1989, 32, 856-859.	6.4	8
58	Enantiopure 3-(arylmethylidene)aminoxy-2-methylpropionic acids: synthesis and antiinflammatory properties. European Journal of Medicinal Chemistry, 2001, 36, 799-807.	5.5	8
59	Synthesis and dopaminergic properties of the two enantiomers of 3-(3,4-dimethylphenyl)-1-propylpiperidine, a potent and selective dopamine D4 receptor ligand. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 223-226.	2.2	8
60	Monoaryl derivatives as transthyretin fibril formation inhibitors: Design, synthesis, biological evaluation and structural analysis. Bioorganic and Medicinal Chemistry, 2020, 28, 115673.	3.0	8
61	Conformationally restrained β-blocking oxime ethers. 2. Synthesis and β-adrenergic properties of diastereoisomeric anti and syn 2-(5′-(3′-aryl-substituted)isoxazolidinyl)-N-alkylethanolaminesâ~†. European Journal of Medicinal Chemistry, 1994, 29, 855-867.	5.5	7
62	Synthesis and in-vitro antitumour activity of new naphthyridine derivatives on human pancreatic cancer cells. Journal of Pharmacy and Pharmacology, 2010, 61, 1057-1066.	2.4	7
63	Multifunctional Small Molecules as Potential Anti-Alzheimer's Disease Agents. Molecules, 2021, 26, 6015.	3.8	7
64	New β-lactam monocyclic inhibitors of human elastases: Synthesis and anti-elastase properties of 1-carbamoyl-4-methyleneaminoxyazetidinone derivatives. European Journal of Medicinal Chemistry, 1997, 32, 889-894.	5.5	6
65	Synthesis and α-adrenergic and I1-imidazoline activity of 3-phenylpiperidines dimethyl-substituted on the phenyl ring. European Journal of Medicinal Chemistry, 1998, 33, 911-919.	5.5	6
66	Synthesis and antimicrobial properties of cephalosporin derivatives substituted on the C(7) nitrogen with arylmethyloxyimino or arylmethyloxyamino alkanoyl groups. Il Farmaco, 1999, 54, 224-231.	0.9	6
67	Synthesis and inhibitory activity towards human leukocyte elastase of new 7α-methoxy and 7α-chloro (2-acyloxymethyl) cephem derivatives. European Journal of Medicinal Chemistry, 2001, 36, 185-193.	5.5	6
68	Aryl-substituted methyleneaminoxymethyl (MAOM) analogues of diarylcyclopentenyl cyclooxygenase-2 inhibitors: effects of some structural modifications on their biological properties. European Journal of Medicinal Chemistry, 2002, 37, 585-594.	5.5	6
69	Synthesis and cycloxygenase inhibitory properties of new naphthalene-methylsulfonamido, naphthalene-methylsulfonyl and tetrahydronaphthalen-methylsulfonamido compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 406-412.	5.2	6
70	Synthesis and antimicrobial activity of 7 beta-[N-(arylmethyloxyimino) acetamido]cephalosporanic acid derivatives. Il Farmaco, 1995, 50, 713-8.	0.9	6
71	Synthesis and aldose reductase inhibitory activity of new N-(benzyloxy) glycine derivatives. Il Farmaco, 1998, 53, 369-373.	0.9	5
72	Synthesis and antiviral properties of 9-[(2-methyleneaminoxyethoxy)methyl]guanine derivatives as novel Acyclovir analogues. Il Farmaco, 2000, 55, 104-108.	0.9	5

ELISABETTA ORLANDINI

#	Article	IF	CITATIONS
73	Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1194-1205.	5.2	5
74	Conformationally restrained analogues of sympathomimetic catecholamines. European Journal of Medicinal Chemistry, 2002, 37, 11-22.	5.5	4
75	Synthesis and antimicrobial activity of new 7β-(benzo[a]dihydrocarbazolyloxyacetyl)-substituted cephalosporins. Il Farmaco, 2004, 59, 691-696.	0.9	4
76	Synthesis and prostaglandin synthase inhibitory activity of new aromatic O-alkyloxime ethers substituted with methylsulfonamido or methylsulfonyl groups on their aliphatic portion. Il Farmaco, 2003, 58, 707-714.	0.9	3
77	Different Binding Modes of Structurally Diverse Ligands for Human D3DAR. Journal of Chemical Information and Modeling, 2010, 50, 2162-2175.	5.4	3
78	Age-related Macular Degeneration: Current Knowledge of Zinc Metalloproteinases Involvement. Current Drug Targets, 2019, 20, 903-918.	2.1	3
79	Synthesis and antimicrobial properties of substituted 3-aminoxypropionyl and 3-aminoxy-(E)-2-methoxyiminopropionyl monobactams. Il Farmaco, 1990, 45, 879-88.	0.9	3
80	Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. Crystals, 2022, 12, 638.	2.2	3
81	Synthesis and 5-HT2A, 5-HT1Aand α1-Binding Affinities of 2-[2-Hydroxy-3-(pyridin-3-yl-methyl)amino]-, 2-[2-Hydroxy-3-(2-pyridin-2-yl-ethyl)amino]- and 2-[2-Hydroxy-3-(4-N-methyl-piperazin-1-yl)-amino]propoxybenzaldehyde-O-(substituted) Benzyl Oximes. Archiv Der Pharmazie. 2007. 340. 135-139.	4.1	2
82	Synthesis and in-vitro antitumour activity of new naphthyridine derivatives on human pancreatic cancer cells. Journal of Pharmacy and Pharmacology, 2009, 61, 1057-1066.	2.4	2
83	Synthesis and adrenergic beta-blocking activity of ortho-, meta- and para-oxypropanolamino-substituted [(benzylideneamino)oxy]propanolamines. Il Farmaco, 1995, 50, 239-43.	0.9	2
84	Synthesis and antimicrobial activity of 7 beta-(S)- and 7 beta-[(R)-3-(methyleneaminoxy)-2-methylpropionamido]substituted cephalosporanic acid derivatives. Il Farmaco, 1996, 51, 283-6.	0.9	2
85	Synthesis and Evaluation of Monoaryl Derivatives as Transthyretin Fibril Formation Inhibitors. Pharmaceutical Chemistry Journal, 2022, 56, 38-47.	0.8	2
86	Synthèse et propriétés anti-microbiennes des nouveaux dérivés céphame et péname avec le group carboxylique dans la "mauvaise―configuration β. European Journal of Medicinal Chemistry, 1989, 24, 573-577.	e 5.5	1
87	Synthesis and COX-2 Inhibitory Properties of N-Phenyl- and N-Benzyl-Substituted Amides of 2-(4-Methylsulfonylphenyl)cyclopent-1-ene-1-carboxylic Acid and of Their Pyrazole, Thiophene and Isoxazole Analogues ChemInform, 2004, 35, no.	0.0	1
88	Synthesis and Prostaglandin Synthase Inhibitory Activity of New Aromatic O-Alkyloxime Ethers Substituted with Methylsulfonamido or Methylsulfonyl Groups on Their Aliphatic Portion ChemInform, 2004, 35, no.	0.0	0
89	Spirotetrahydronaphthalene analogues of sympathomimetic catecholamines. Synthesis and adrenergic activity of 5,6- and 6,7-dihydroxy-3,4-dihydrospiro[naphthalen-1(2H)-3′ -piperidines]. Journal of Pharmacy and Pharmacology, 2010, 54, 649-660.	2.4	0