
Laurel J Trainor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8807122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of GERAS DANcing for Cognition and Exercise (DANCE): a feasibility study. Pilot and Feasibility Studies, 2022, 8, 9.	0.5	3
2	Please don't stop the music: A meta-analysis of the cognitive and academic benefits of instrumental musical training in childhood and adolescence. Educational Research Review, 2022, 35, 100436.	4.1	21
3	The sound of silence: Predictive error responses to unexpected sound omission in adults. European Journal of Neuroscience, 2022, 55, 1972-1985.	1.2	5
4	"Taste typicality―is a foundational and multi-modal dimension of ordinary aesthetic experience. Current Biology, 2022, 32, 1837-1842.e3.	1.8	8
5	Evidence for topâ€down metre perception in infancy as shown by primed neural responses to an ambiguous rhythm. European Journal of Neuroscience, 2022, 55, 2003-2023.	1.2	10
6	Can Peer Review Be Kinder? Supportive Peer Review: A Re-Commitment to Kindness and a Call to Action. Canadian Journal of Kidney Health and Disease, 2022, 9, 205435812210803.	0.6	5
7	Creating a shared musical interpretation: Changes in coordination dynamics while learning unfamiliar music together. Annals of the New York Academy of Sciences, 2022, 1516, 106-113.	1.8	8
8	Evidence for early arousalâ€based differentiation of emotions in children's musical production. Developmental Science, 2021, 24, e12982.	1.3	2
9	Body sway predicts romantic interest in speed dating. Social Cognitive and Affective Neuroscience, 2021, 16, 185-192.	1.5	14
10	Rhythmic Auditory Music Stimulation increases task-distraction during exercise among cardiac rehabilitation patients: A secondary analysis of a randomized controlled trial. Psychology of Sport and Exercise, 2021, 53, 101868.	1.1	1
11	Inferior Auditory Time Perception in Children With Motor Difficulties. Child Development, 2021, 92, e907-e923.	1.7	9
12	Collective music listening: Movement energy is enhanced by groove and visual social cues. Quarterly Journal of Experimental Psychology, 2021, 74, 1037-1053.	0.6	22
13	Extra-Curricular Activities and Well-Being: Results From a Survey of Undergraduate University Students During COVID-19 Lockdown Restrictions. Frontiers in Psychology, 2021, 12, 647402.	1.1	22
14	Rhythm in dyadic interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200337.	1.8	17
15	Cross-frequency coupling explains the preference for simple ratios in rhythmic behaviour and the relative stability across non-synchronous patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200333.	1.8	7
16	Rhythm and timing as vulnerabilities in neurodevelopmental disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200327.	1.8	46
17	Predictive Uncertainty Underlies Auditory Boundary Perception. Psychological Science, 2021, 32, 1416-1425.	1.8	10
18	Atypical beta power fluctuation while listening to an isochronous sequence in dyslexia. Clinical Neurophysiology, 2021, 132, 2384-2390.	0.7	6

#	Article	IF	CITATIONS
19	Understanding the origins of musicality requires reconstructing the interactive dance between music-specific adaptations, exaptations, and cultural creations. Behavioral and Brain Sciences, 2021, 44, e116.	0.4	1
20	Regular rhythmic primes boost P600 in grammatical error processing in dyslexic adults and matched controls. Neuropsychologia, 2020, 138, 107324.	0.7	18
21	Dynamic Modulation of Beta Band Cortico-Muscular Coupling Induced by Audio–Visual Rhythms. Cerebral Cortex Communications, 2020, 1, tgaa043.	0.7	8
22	Cross-Cultural Work in Music Cognition. Music Perception, 2020, 37, 185-195.	0.5	61
23	Quantifying Sources of Variability in Infancy Research Using the Infant-Directed-Speech Preference. Advances in Methods and Practices in Psychological Science, 2020, 3, 24-52.	5.4	124
24	Body sway reflects joint emotional expression in music ensemble performance. Scientific Reports, 2019, 9, 205.	1.6	41
25	Electrophysiological Correlates of Key and Harmony Processing in 3-year-old Children. Music Perception, 2019, 36, 435-447.	0.5	6
26	Rhythmicity facilitates pitch discrimination: Differential roles of low and high frequency neural oscillations. NeuroImage, 2019, 198, 31-43.	2.1	26
27	Nonmusicians Express Emotions in Musical Productions Using Conventional Cues. Music & Science, 2019, 2, 205920431983494.	0.6	7
28	Are you the sort of person who would like this? Quantifying the typicality of aesthetic taste across seeing and hearing. Journal of Vision, 2019, 19, 174b.	0.1	0
29	Rhythm and melody as social signals for infants. Annals of the New York Academy of Sciences, 2018, 1423, 66-72.	1.8	84
30	Infants' use of interpersonal asynchrony as a signal for third-party affiliation. Music & Science, 2018, 1, 205920431774585.	0.6	6
31	Beta oscillatory power modulation reflects the predictability of pitch change. Cortex, 2018, 106, 248-260.	1.1	36
32	Is auditory perceptual timing a core deficit of developmental coordination disorder?. Annals of the New York Academy of Sciences, 2018, 1423, 30-39.	1.8	27
33	How Live Music Moves Us: Head Movement Differences in Audiences to Live Versus Recorded Music. Frontiers in Psychology, 2018, 9, 2682.	1.1	52
34	Young children pause on phrase boundaries in self-paced music listening: The role of harmonic cues Developmental Psychology, 2018, 54, 842-856.	1.2	6
35	Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity. Hearing Research, 2017, 345, 30-42.	0.9	13
36	Body sway reflects leadership in joint music performance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4134-E4141.	3.3	94

#	Article	IF	CITATIONS
37	Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object. Cognition, 2017, 164, 1-7.	1.1	39
38	Effects of Interpersonal Movement Synchrony on Infant Helping Behaviors. Music Perception, 2017, 34, 319-326.	0.5	32
39	La musique chez les tout-petits. Revue Internationale D'education, 2017, , 65-74.	0.0	1
40	Hearing the Beat. Music Perception, 2016, 34, 56-70.	0.5	25
41	The Neurobiology of Musical Expectations from Perception to Emotion. , 2016, , .		2
42	Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background. Frontiers in Neuroscience, 2016, 10, 229.	1.4	104
43	Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence. Frontiers in Psychology, 2016, 7, 327.	1.1	41
44	Multi-domain feature selection in auditory MisMatch Negativity via PARAFAC-based template matching approach. , 2016, 2016, 1603-1607.		2
45	Listeners lengthen phrase boundaries in self-paced music Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1676-1686.	0.7	9
46	The source dilemma hypothesis: Perceptual uncertainty contributes to musical emotion. Cognition, 2016, 154, 174-181.	1.1	11
47	Social Effects of Movement Synchrony: Increased Infant Helpfulness only Transfers to Affiliates of Synchronously Moving Partners. Infancy, 2016, 21, 807-821.	0.9	87
48	Rhythm and interpersonal synchrony in early social development. Annals of the New York Academy of Sciences, 2015, 1337, 45-52.	1.8	84
49	Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery. Journal of Neuroscience, 2015, 35, 15187-15198.	1.7	162
50	The Effect of Visual Information on Young Children's Perceptual Sensitivity to Musical Beat Alignment. Timing and Time Perception, 2015, 3, 88-101.	0.4	4
51	The Musician Redefined: A Behavioral Assessment of Rhythm Perception in Professional Club DJs. Timing and Time Perception, 2015, 3, 116-132.	0.4	13
52	Finding the beat: a neural perspective across humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140093.	1.8	277
53	Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140092.	1.8	59
54	Cortical Representations Sensitive to the Number of Perceived Auditory Objects Emerge between 2 and 4 Months of Age: Electrophysiological Evidence. Journal of Cognitive Neuroscience, 2015, 27, 1060-1067.	1.1	48

#	Article	IF	CITATIONS
55	The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140089.	1.8	52
56	Perceptual and cognitive enhancement with an adaptive timing partner: Electrophysiological responses to pitch change Psychomusicology: Music, Mind and Brain, 2015, 25, 404-415.	1.1	2
57	Beat-induced fluctuations in auditory cortical beta-band activity: using EEG to measure age-related changes. Frontiers in Psychology, 2014, 5, 742.	1.1	50
58	Cortical indices of sound localization mature monotonically in early infancy. European Journal of Neuroscience, 2014, 40, 3608-3619.	1.2	16
59	Learning to differentiate individuals by their voices: Infants' individuation of native―and foreignâ€species voices. Developmental Psychobiology, 2014, 56, 228-237.	0.9	18
60	Early development of polyphonic sound encoding and the high voice superiority effect. Neuropsychologia, 2014, 57, 50-58.	0.7	47
61	Fourteen-month-old infants use interpersonal synchrony as a cue to direct helpfulness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130400.	1.8	115
62	Enculturation to musical pitch structure in young children: evidence from behavioral and electrophysiological methods. Developmental Science, 2014, 17, 142-158.	1.3	41
63	Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 2014, 17, 1003-1011.	1.3	385
64	Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10383-10388.	3.3	100
65	Explaining the high voice superiority effect in polyphonic music: Evidence from cortical evoked potentials and peripheral auditory models. Hearing Research, 2014, 308, 60-70.	0.9	37
66	Musical Development. , 2013, , 423-497.		37
67	Brief pitch-priming facilitates infants' discrimination of pitch-evoking noise: Evidence from event-related potentials. Brain and Cognition, 2013, 83, 271-278.	0.8	7
68	Development of pitch processing: Infants' discrimination of iterated rippled noise stimuli with unresolved spectral content. Hearing Research, 2013, 304, 1-6.	0.9	5
69	Development of Simultaneous Pitch Encoding: Infants Show a High Voice Superiority Effect. Cerebral Cortex, 2013, 23, 660-669.	1.6	68
70	Plasticity after perceptual narrowing for voice perception: reinstating the ability to discriminate monkeys by their voices at 12 months of age. Frontiers in Psychology, 2013, 4, 718.	1.1	11
71	Simultaneously-evoked auditory potentials: a novel paradigm for measuring auditory-evoked electroencephalographic activity at successive levels of the auditory neuraxis Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
72	Processing simultaneous auditory objects: Infants' ability to detect mistuning in harmonic complexes. Journal of the Acoustical Society of America, 2012, 131, 993-997.	0.5	30

#	Article	IF	CITATIONS
73	Use of Prosody and Information Structure in High Functioning Adults with Autism in Relation to Language Ability. Frontiers in Psychology, 2012, 3, 72.	1.1	45
74	The high-voice superiority effect in polyphonic music is influenced by experience: A comparison of musicians who play soprano-range compared with bass-range instruments Psychomusicology: Music, Mind and Brain, 2012, 22, 97-104.	1.1	15
75	Internalized Timing of Isochronous Sounds Is Represented in Neuromagnetic Beta Oscillations. Journal of Neuroscience, 2012, 32, 1791-1802.	1.7	458
76	Predictive information processing is a fundamental learning mechanism present in early development: Evidence from infants. International Journal of Psychophysiology, 2012, 83, 256-258.	0.5	30
77	Auditory Processing in High-Functioning Adolescents with Autism Spectrum Disorder. PLoS ONE, 2012, 7, e44084.	1.1	86
78	Sequencing the Cortical Processing of Pitch-Evoking Stimuli using EEG Analysis and Source Estimation. Frontiers in Psychology, 2012, 3, 180.	1.1	25
79	The neurobiological basis of musical expectations. , 2012, , .		2
80	Musical experience, plasticity, and maturation: issues in measuring developmental change using EEG and MEG. Annals of the New York Academy of Sciences, 2012, 1252, 25-36.	1.8	36
81	Becoming musically enculturated: effects of music classes for infants on brain and behavior. Annals of the New York Academy of Sciences, 2012, 1252, 129-138.	1.8	52
82	Active music classes in infancy enhance musical, communicative and social development. Developmental Science, 2012, 15, 398-407.	1.3	136
83	Development of Pitch and Music Perception. Springer Handbook of Auditory Research, 2012, , 223-254.	0.3	14
84	Singing development as a sensorimotor interaction problem Psychomusicology: Music, Mind and Brain, 2011, 21, 31-44.	1.1	13
85	Mean-Square Error in Periodogram Approaches With Adaptive Windowing. IEEE Transactions on Signal Processing, 2011, 59, 923-935.	3.2	5
86	Comparison of artifact correction methods for infant EEG applied to extraction of event-related potential signals. Clinical Neurophysiology, 2011, 122, 43-51.	0.7	44
87	A machine learning approach for distinguishing age of infants using auditory evoked potentials. Clinical Neurophysiology, 2011, 122, 2139-2150.	0.7	24
88	Associations Between Length of Music Training and Reading Skills in Children. Music Perception, 2011, 29, 147-155.	0.5	66
89	Development of auditoryâ€specific brain rhythm in infants. European Journal of Neuroscience, 2011, 33, 521-529.	1.2	12
90	Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters. Infancy, 2011, 16, 655-668.	0.9	52

#	Article	IF	CITATIONS
91	Cortical Plasticity in 4-Month-Old Infants: Specific Effects of Experience with Musical Timbres. Brain Topography, 2011, 24, 192-203.	0.8	43
92	Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training. PLoS ONE, 2011, 6, e21493.	1.1	94
93	Musical Enculturation in Preschool Children: Acquisition of Key and Harmonic Knowledge. Music Perception, 2010, 28, 195-200.	0.5	76
94	Development of Auditory Phase-Locked Activity for Music Sounds. Journal of Neurophysiology, 2010, 103, 218-229.	0.9	44
95	The emotional origins of music. Physics of Life Reviews, 2010, 7, 44-45.	1.5	11
96	Effects of Kindermusik training on infants' rhythmic enculturation. Developmental Science, 2010, 13, 545-551.	1.3	52
97	Music Acquisition and Effects of Musical Experience. Springer Handbook of Auditory Research, 2010, , 89-127.	0.3	38
98	Finding the Pitch of the Missing Fundamental in Infants. Journal of Neuroscience, 2009, 29, 7718-8822.	1.7	62
99	Melody recognition by two-month-old infants. Journal of the Acoustical Society of America, 2009, 125, EL58-EL62.	0.5	39
100	Maturation of cortical mismatch responses to occasional pitch change in early infancy: Effects of presentation rate and magnitude of change. Neuropsychologia, 2009, 47, 218-229.	0.7	75
101	Development of infant mismatch responses to auditory pattern changes between 2 and 4 months old. European Journal of Neuroscience, 2009, 29, 861-867.	1.2	52
102	Auditoryâ€Somatosensory Integration and Cortical Plasticity in Musical Training. Annals of the New York Academy of Sciences, 2009, 1169, 143-150.	1.8	44
103	Understanding the Benefits of Musical Training. Annals of the New York Academy of Sciences, 2009, 1169, 133-142.	1.8	85
104	Effects of Musical Training on Key and Harmony Perception. Annals of the New York Academy of Sciences, 2009, 1169, 164-168.	1.8	35
105	Beta and Gamma Rhythms in Human Auditory Cortex during Musical Beat Processing. Annals of the New York Academy of Sciences, 2009, 1169, 89-92.	1.8	210
106	Neural Representation of Transposed Melody in Infants at 6 Months of Age. Annals of the New York Academy of Sciences, 2009, 1169, 287-290.	1.8	30
107	The primal role of the vestibular system in determining musical rhythm. Cortex, 2009, 45, 35-43.	1.1	93
108	Infantâ€Directed Speech Is Modulated by Infant Feedback. Infancy, 2008, 13, 410-420.	0.9	126

#	Article	IF	CITATIONS
109	The neural roots of music. Nature, 2008, 453, 598-599.	13.7	102
110	Vestibular influence on auditory metrical interpretation. Brain and Cognition, 2008, 67, 94-102.	0.8	164
111	Music training leads to the development of timbre-specific gamma band activity. NeuroImage, 2008, 41, 113-122.	2.1	131
112	Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 2008, 28, 9632-9639.	1.7	217
113	Simultaneous pitches are encoded separately in auditory cortex: an MMNm study. NeuroReport, 2008, 19, 361-366.	0.6	58
114	Infants' Memory for Isolated Tones and the Effects of Interference. Music Perception, 2008, 26, 121-127.	0.5	10
115	Stimulus, Task, and Learning Effects on Measures of Temporal Resolution: Implications for Predictors of Language Outcome. Journal of Speech, Language, and Hearing Research, 2008, 51, 1630-1642.	0.7	10
116	Mismatch Responses to Pitch Changes in Early Infancy. Journal of Cognitive Neuroscience, 2007, 19, 878-892.	1.1	136
117	Music acquisition: effects of enculturation and formal training on development. Trends in Cognitive Sciences, 2007, 11, 466-472.	4.0	352
118	Frontal brain electrical activity (EEG) and heart rate in response to affective infant-directed (ID) speech in 9-month-old infants. Brain and Cognition, 2007, 65, 14-21.	0.8	42
119	Event-Related Potential (ERP) Measures in Auditory Development Research. , 2007, , 69-102.		5
120	Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 2007, 105, 533-546.	1.1	335
121	Do Preferred Beat Rate and Entrainment to the Beat Have a Common Origin in Movement?. Empirical Musicology Review, 2007, 2, 17-20.	0.2	31
122	Effects of spatial separation and stimulus probability on the event-related potentials elicited by occasional changes in sound location. Brain Research, 2006, 1071, 175-185.	1.1	62
123	Occasional changes in sound location enhance middle latency evoked responses. Brain Research, 2006, 1076, 187-192.	1.1	46
124	The Development of Temporal Resolution: Between-Channel Gap Detection in Infants and Adults. Journal of Speech, Language, and Hearing Research, 2006, 49, 1104-1113.	0.7	30
125	One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 2006, 129, 2593-2608.	3.7	286
126	Innateness, Learning, and the Difficulty of Determining Whether Music is an Evolutionary Adaptation. Music Perception, 2006, 24, 105-110.	0.5	18

#	Article	IF	CITATIONS
127	Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport, 2005, 16, 1781-1785.	0.6	164
128	Neuroplastic Adaptations of the Auditory System in Musicians and Nonmusicians. , 2005, , 387-394.		2
129	Perceived intensity effects in the octave illusion. Perception & Psychophysics, 2005, 67, 648-658.	2.3	5
130	Memory for melody: infants use a relative pitch code. Cognition, 2005, 98, 1-11.	1.1	153
131	Are there critical periods for musical development?. Developmental Psychobiology, 2005, 46, 262-278.	0.9	124
132	Automatic Encoding of Polyphonic Melodies in Musicians and Nonmusicians. Journal of Cognitive Neuroscience, 2005, 17, 1578-1592.	1.1	160
133	Feeling the Beat: Movement Influences Infant Rhythm Perception. Science, 2005, 308, 1430-1430.	6.0	475
134	Musical Training Enhances Automatic Encoding of Melodic Contour and Interval Structure. Journal of Cognitive Neuroscience, 2004, 16, 1010-1021.	1.1	287
135	Long-term memory for music: infants remember tempo and timbre. Developmental Science, 2004, 7, 289-296.	1.3	94
136	Development of a flexible, realistic hearing in noise test environment (R-HINT-E). Signal Processing, 2004, 84, 299-309.	2.1	11
137	A novel signal-processing strategy for hearing-aid design: neurocompensation. Signal Processing, 2004, 84, 1239-1253.	2.1	20
138	Enhancement of auditory cortical development by musical experience in children. NeuroReport, 2004, 15, 1917-1921.	0.6	135
139	Music and Learning-Induced Cortical Plasticity. Annals of the New York Academy of Sciences, 2003, 999, 438-450.	1.8	121
140	Effects of Musical Training on the Auditory Cortex in Children. Annals of the New York Academy of Sciences, 2003, 999, 506-513.	1.8	104
141	Long-Term Memory for Pitch in Six-Month-Old Infants. Annals of the New York Academy of Sciences, 2003, 999, 520-521.	1.8	3
142	Development of frontal electroencephalogram (EEG) and heart rate (ECG) responses to affective musical stimuli during the first 12 months of post-natal life. Brain and Cognition, 2003, 52, 27-32.	0.8	65
143	Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 2003, 51, 5-15.	0.5	118
144	Enhancement of Neuroplastic P2 and N1c Auditory Evoked Potentials in Musicians. Journal of Neuroscience, 2003, 23, 5545-5552.	1.7	307

#	Article	IF	CITATIONS
145	Automatic and Controlled Processing of Melodic Contour and Interval Information Measured by Electrical Brain Activity. Journal of Cognitive Neuroscience, 2002, 14, 430-442.	1.1	124
146	Preference for Sensory Consonance in 2- and 4-Month-Old Infants. Music Perception, 2002, 20, 187-194.	0.5	164
147	Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 2002, 83, 111-130.	0.7	432
148	Spectral slope discrimination in infancy: Sensitivity to socially important timbres. , 2002, 25, 183-194.		23
149	Pitch characteristics of infant-directed speech affect infants' ability to discriminate vowels. Psychonomic Bulletin and Review, 2002, 9, 335-340.	1.4	134
150	Measuring temporal resolution in infants using mismatch negativity. NeuroReport, 2001, 12, 2443-2448.	0.6	74
151	Infants' Responsiveness to Fathers' Singing. Music Perception, 2001, 18, 409-425.	0.5	21
152	Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 2001, 15, 487-500.	1.2	373
153	Electrical Brain Activity Associated with Automatic and Controlled Processing of Melodic Contour and Interval. Annals of the New York Academy of Sciences, 2001, 930, 429-432.	1.8	3
154	Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 2001, 15, 487-500.	1.2	208
155	Is Infant-Directed Speech Prosody a Result of the Vocal Expression of Emotion?. Psychological Science, 2000, 11, 188-195.	1.8	317
156	Infants' and adults' use of duration and intensity cues in the segmentation of tone patterns. Perception & Psychophysics, 2000, 62, 333-340.	2.3	93
157	A comparison of contour and interval processing in musicians and nonmusicians using event-related potentials. Australian Journal of Psychology, 1999, 51, 147-153.	1.4	82
158	Distinctive messages in infant-directed lullabies and play songs Developmental Psychology, 1999, 35, 527-534.	1.2	103
159	Using mismatch negativity to measure auditory temporal resolution thresholds. NeuroReport, 1999, 10, 2079-2082.	0.6	25
160	Infants prefer higher-pitched singing. , 1998, 21, 799-805.		80
161	The development of evaluative responses to music:. , 1998, 21, 77-88.		223
162	Mismatch negativity to speech stimuli in 8-month-old infants and adults. International Journal of Psychophysiology, 1998, 29, 227-236.	0.5	53

#	Article	IF	CITATIONS
163	Mothers' and fathers' singing to infants Developmental Psychology, 1997, 33, 500-507.	1.2	169
164	Effect of frequency ratio on infants' and adults' discrimination of simultaneous intervals Journal of Experimental Psychology: Human Perception and Performance, 1997, 23, 1427-1438.	0.7	29
165	The acoustic basis of preferences for infant-directed singing. , 1997, 20, 383-396.		199
166	Sensory consonance and the perceptual similarity of complexâ€ŧone harmonic intervals: Tests of adult and infant listeners. Journal of the Acoustical Society of America, 1996, 100, 3321-3328.	0.5	103
167	Effects of harmonics on relative pitch discrimination in a musical context. Perception & Psychophysics, 1996, 58, 704-712.	2.3	5
168	Infant preferences for infant-directed versus noninfant-directed playsongs and lullabies. , 1996, 19, 83-92.		207
169	Key membership and implied harmony in Western tonal music: Developmental perspectives. Perception & Psychophysics, 1994, 56, 125-132.	2.3	172
170	Adults identify infant-directed music across cultures. , 1993, 16, 193-211.		146
171	Maternal singing in cross-cultural perspective. , 1993, 16, 285-295.		165
172	Music and Speech Processing in the First Year of Life. Advances in Child Development and Behavior, 1993, 24, 1-35.	0.7	85
173	What Mediates Infants' and Adults' Superior Processing of the Major over the Augmented Triad?. Music Perception, 1993, 11, 185-196.	0.5	103
174	Musical context effects in infants and adults: Key distance Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 615-626.	0.7	55
175	Listening strategies in infancy: the roots of music and language development. , 1993, , 278-327.		45
176	The Development of Referential Meaning in Music. Music Perception, 1992, 9, 455-470.	0.5	35
177	A comparison of infants' and adults' sensitivity to Western musical structure Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 394-402.	0.7	165
178	Lullabies and Simplicity: A Cross-Cultural Perspective. Psychology of Music, 1992, 20, 15-28.	0.9	112
179	Infants' perception of good and bad melodies Psychomusicology: Music, Mind and Brain, 1990, 9, 5-19.	1.1	68
180	Chapter 5 Rules for Listening in Infancy. Advances in Psychology, 1990, 69, 87-119.	0.1	13

#	ARTICLE	IF	CITATIONS
181	Aging and auditory temporal sequencing: Ordering the elements of repeating tone patterns. Perception & Psychophysics, 1989, 45, 417-426.	2.3	63