
Srinu Tothadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/880711/publications.pdf Version: 2024-02-01

SDINII TOTHADI

#	Article	IF	CITATIONS
1	Polymorphs, Salts, and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 2147-2152.	1.4	767
2	Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. Accounts of Chemical Research, 2014, 47, 2514-2524.	7.6	741
3	Salt and Cocrystals of Sildenafil with Dicarboxylic Acids: Solubility and Pharmacokinetic Advantage of the Glutarate Salt. Molecular Pharmaceutics, 2013, 10, 4687-4697.	2.3	131
4	Synthon Modularity in Cocrystals of 4-Bromobenzamide with <i>n</i> -Alkanedicarboxylic Acids: Type I and Type II Halogen··Ĥalogen Interactions. Crystal Growth and Design, 2013, 13, 3242-3254.	1.4	116
5	Designing ternary cocrystals with hydrogen bonds and halogen bonds. Chemical Communications, 2013, 49, 7791.	2.2	107
6	Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds. Crystal Growth and Design, 2014, 14, 5293-5302.	1.4	102
7	Synthon identification in co-crystals and polymorphs with IR spectroscopy. Primary amides as a case study. CrystEngComm, 2013, 15, 4640.	1.3	96
8	Shape and size mimicry in the design of ternary molecular solids: towards a robust strategy for crystal engineering. Chemical Communications, 2011, 47, 12080.	2.2	87
9	Odd–Even Alternation in Tautomeric Porous Organic Cages with Exceptional Chemical Stability. Angewandte Chemie - International Edition, 2017, 56, 2123-2126.	7.2	55
10	Synthon Modularity in 4-Hydroxybenzamide–Dicarboxylic Acid Cocrystals. Crystal Growth and Design, 2012, 12, 6188-6198.	1.4	49
11	Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2900-2915.	1.6	47
12	Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angewandte Chemie - International Edition, 2019, 58, 4243-4247.	7.2	39
13	Can We Identify the Salt–Cocrystal Continuum State Using XPS?. Crystal Growth and Design, 2021, 21, 735-747.	1.4	37
14	Triclabendazole: An Intriguing Case of Coâ€existence of Conformational and Tautomeric Polymorphism. Chemistry - an Asian Journal, 2012, 7, 330-342.	1.7	34
15	Polymorphism in cocrystals of urea:4,4′-bipyridine and salicylic acid:4,4′-bipyridine. CrystEngComm, 2014, 16, 7587-7597.	1.3	32
16	Odd–Even Alternation in Tautomeric Porous Organic Cages with Exceptional Chemical Stability. Angewandte Chemie, 2017, 129, 2155-2158.	1.6	32
17	Câ^'F Bond Activation by a Saturated Nâ€Heterocyclic Carbene: Mesoionic Compound Formation and Adduct Formation with B(C ₆ F ₅) ₃ . Angewandte Chemie - International Edition, 2019, 58, 2804-2808.	7.2	27
18	Combinatorial crystal synthesis of ternary solids based on 2-methylresorcinol. CrystEngComm, 2015, 17, 7866-7869.	1.3	25

Srinu Tothadi

#	Article	IF	CITATIONS
19	Supramolecular Synthons in Bumetanide Cocrystals and Ternary Products. Crystal Growth and Design, 2017, 17, 4225-4236.	1.4	25
20	Naftopidil Molecular Salts with Improved Dissolution and Permeation. Crystal Growth and Design, 2020, 20, 3064-3076.	1.4	25
21	Novel Pharmaceutical Cocrystals and Salts of Bumetanide. Crystal Growth and Design, 2020, 20, 793-803.	1.4	19
22	Modular assembly of porous organic cage crystals: isoreticular quasiracemates and ternary co-crystal. CrystEngComm, 2017, 19, 4933-4941.	1.3	18
23	Correction for Polymorphs, Salts and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 4290-4291.	1.4	17
24	Systematic synthesis of a 6-component organic-salt alloy of naftopidil, and pentanary, quaternary and ternary multicomponent crystals. IUCrJ, 2018, 5, 816-822.	1.0	16
25	Saturated Nâ€Heterocyclic Carbene Based Thiele's Hydrocarbon with a Tetrafluorophenylene Linker. Chemistry - A European Journal, 2019, 25, 16533-16537.	1.7	15
26	Does stoichiometry matter? Cocrystals of aliphatic dicarboxylic acids with isonicotinamide: odd–even alternation in melting points. CrystEngComm, 2019, 21, 2481-2484.	1.3	14
27	Câ^'F Bond Activation by a Saturated Nâ€Heterocyclic Carbene: Mesoionic Compound Formation and Adduct Formation with B(C ₆ F ₅) ₃ . Angewandte Chemie, 2019, 131, 2830-2834.	1.6	14
28	Pyridylpyrrolido ligand in Ge(<scp>ii</scp>) and Sn(<scp>ii</scp>) chemistry: synthesis, reactivity and catalytic application. Dalton Transactions, 2021, 50, 16678-16684.	1.6	13
29	Morphological Evolution of Two-Dimensional Porous Hexagonal Trimesic Acid Framework. ACS Applied Materials & Interfaces, 2020, 12, 15588-15594.	4.0	12
30	Substitution at sp ³ boron of a six-membered NHC·BH ₃ : convenient access to a dihydroxyborenium cation. Chemical Communications, 2022, 58, 3783-3786.	2.2	12
31	Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angewandte Chemie, 2019, 131, 4287-4291.	1.6	10
32	The diverse reactivity of NOBF ₄ towards silylene, disilene, germylene and stannylene. Chemical Communications, 2021, 57, 5008-5011.	2.2	10
33	Bis(silanetellurone) with C–H···Te Interaction. Inorganic Chemistry, 2020, 59, 17811-17821.	1.9	9
34	Stepwise Nucleophilic Substitution to Access Saturated N-heterocyclic Carbene Haloboranes with Boron–Methyl Bonds. Organometallics, 2020, 39, 4696-4703.	1.1	9
35	Diverse reactivity of carbenes and silylenes towards fluoropyridines. Chemical Communications, 2021, 57, 4428-4431.	2.2	9
36	Synthesis and Application of Silylene-Stabilized Low-Coordinate Ag(I)–Arene Cationic Complexes. Organometallics, 2021, 40, 1626-1632.	1.1	8

Srinu Tothadi

#	Article	IF	CITATIONS
37	Triazine-Based Janus G–C Nucleobase as a Building Block for Self-Assembly, Peptide Nucleic Acids, and Smart Polymers. Journal of Organic Chemistry, 2021, 86, 3186-3195.	1.7	6
38	Different mechanical responses of dimorphic forms of Anthracene Schiff base crystal. Journal of Molecular Structure, 2022, 1252, 132182.	1.8	6
39	Reactivity of (TMS) ₂ N(η ¹ -Cp*)Siâ•&i(η ¹ -Cp*)N(TMS) ₂ toward the Halides of Groups 13–15. Organometallics, 2021, 40, 1874-1883.	1.1	5
40	Structure-property correlation of halogen substituted benzothiazole crystals. Journal of Molecular Structure, 2021, 1243, 130765.	1.8	4
41	Carbazole Substituted Amidinato Silylene: Synthesis, Bonding, and Coordination Behavior with Coinage Metals. Organometallics, 2021, 40, 3201-3210.	1.1	3
42	Nucleophilic Substitution at a Coordinatively Saturated Five-Membered NHCâ^™Haloborane Centre. Inorganics, 2022, 10, 97.	1.2	3
43	4-Hydroxybenzamide 1,4-dioxane hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2661-o2661.	0.2	2
44	Crystal Engineering in the Desiraju Research Group in Bangalore. Crystal Growth and Design, 2012, 12, 4688-4691.	1.4	2
45	Separation of a diastereomeric diol pair using the mechanical properties of crystals. CrystEngComm, 2021, 23, 7056-7060.	1.3	2
46	Supramolecular Synthon Identification in Azelaic Acid – Isonicotinamide. Journal of Magnetic Resonance Open, 2022, 10-11, 100056.	0.5	2
47	Three in One: Triple G-C-T Base-Coded Brahma Nucleobase Amino Acid: Synthesis, Peptide Formation, and Structural Features. Journal of Organic Chemistry, 2021, 86, 15689-15694.	1.7	1
48	Mechanically Flexible Crystals of Styryl Quinoline Derivatives. Journal of Molecular Structure, 2022, , 133293.	1.8	0