Ana Verissimo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8807021/publications.pdf

Version: 2024-02-01

430874 477307 1,034 51 18 29 citations h-index g-index papers 52 52 52 1651 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Range-wide genomic scans and tests for selection identify non-neutral spatial patterns of genetic variation in a non-model amphibian species (Pelobates cultripes). Conservation Genetics, 2022, 23, 387-400.	1.5	2
2	A mitochondrial genome assembly of the opal chimaera, <i>Chimaera opalescens</i> Luchetti, Iglésias et Sellos 2011, using PacBio HiFi long reads. Mitochondrial DNA Part B: Resources, 2022, 7, 434-437.	0.4	1
3	Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 3—Redescription of Centrophorus uyato (Rafinesque) with a discussion of its complicated nomenclatural history. Zootaxa, 2022, 5155, 1-51.	0.5	5
4	Evaluating surrogates of genetic diversity for conservation planning. Conservation Biology, 2021, 35, 634-642.	4.7	13
5	Shedding light on the Chimaeridae taxonomy: the complete mitochondrial genome of the cartilaginous fish <i>Hydrolagus mirabilis</i> (Collett, 1904) (Holocephali: Chimaeridae). Mitochondrial DNA Part B: Resources, 2021, 6, 420-422.	0.4	2
6	Low impact of different SNP panels from two building-loci pipelines on RAD-Seq population genomic metrics: case study on five diverse aquatic species. BMC Genomics, 2021, 22, 150.	2.8	7
7	The complete mitochondrial genome of the endemic Iberian pygmy skate Neoraja iberica Stehmann, Séret, Costa, & Baro 2008 (Elasmobranchii, Rajidae). Mitochondrial DNA Part B: Resources, 2021, 6, 848-850.	0.4	1
8	A Highly Complex, MHC-Linked, 350 Million-Year-Old Shark Nonclassical Class I Lineage. Journal of Immunology, 2021, 207, 824-836.	0.8	7
9	Transcriptomic response of the intertidal limpet Patella vulgata to temperature extremes. Journal of Thermal Biology, 2021, 101, 103096.	2.5	4
10	Comparative assessment of rangeâ€wide patterns of genetic diversity and structure with SNPs and microsatellites: A case study with Iberian amphibians. Ecology and Evolution, 2020, 10, 10353-10363.	1.9	23
11	Historical biogeography of smoothhound sharks (genus <i>Mustelus < i>) of Southern Africa reveals multiple dispersal events from the Northern Hemisphere. Systematics and Biodiversity, 2020, 18, 633-645.</i>	1.2	4
12	Conservation planning for adaptive and neutral evolutionary processes. Journal of Applied Ecology, 2020, 57, 2159-2169.	4.0	20
13	Cartilaginous fish class II genes reveal unprecedented old allelic lineages and confirm the late evolutionary emergence of DM. Molecular Immunology, 2020, 128, 125-138.	2.2	6
14	The complete mitochondrial genome of the deep-water cartilaginous fish <i>Hydrolagus affinis</i> (de Brito Capello, 1868) (Holocephali: Chimaeridae). Mitochondrial DNA Part B: Resources, 2020, 5, 1810-1812.	0.4	5
15	Cartilaginous fishes offer unique insights into the evolution of the nuclear receptor gene repertoire in gnathostomes. General and Comparative Endocrinology, 2020, 295, 113527.	1.8	22
16	An Ancient, MHC-Linked, Nonclassical Class I Lineage in Cartilaginous Fish. Journal of Immunology, 2020, 204, 892-902.	0.8	12
17	The fatty acid elongation genes elovl4a and elovl4b are present and functional in the genome of tambaqui (Colossoma macropomum). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 245, 110447.	1.6	9
18	Population genomics and phylogeography of a benthic coastal shark (<i>Scyliorhinus canicula</i>) using 2b-RAD single nucleotide polymorphisms. Biological Journal of the Linnean Society, 2019, 126, 289-303.	1.6	15

#	Article	IF	Citations
19	Strong genetic isolation despite wide distribution in a commercially exploited coastal shark. Hydrobiologia, 2019, 838, 121-137.	2.0	6
20	A haplotype-resolved draft genome of the European sardine (Sardina pilchardus). GigaScience, 2019, 8, .	6.4	14
21	A resource for sustainable management: De novo assembly and annotation of the liver transcriptome of the Atlantic chub mackerel, Scomber colias. Data in Brief, 2018, 18, 276-284.	1.0	7
22	A global perspective on the trophic geography of sharks. Nature Ecology and Evolution, 2018, 2, 299-305.	7.8	95
23	Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts. Systematic Parasitology, 2018, 95, 367-371.	1.1	10
24	Nowhere to swim to: climate change and conservation of the relict Dades trout Salmo multipunctata in the High Atlas Mountains, Morocco. Oryx, 2018, 52, 627-635.	1.0	7
25	De novo assembly of the kidney and spleen transcriptomes of the cosmopolitan blue shark, Prionace glauca. Marine Genomics, 2018, 37, 50-53.	1.1	6
26	"Out of the Can― A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus. Genes, 2018, 9, 485.	2.4	30
27	Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the North-East Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasites and Vectors, 2018 , 11 , 63 .	2.5	21
28	Infection of the lesser spotted dogfish with Proleptus obtusus Dujardin, 1845 (Nematoda: Spirurida) reflects ontogenetic feeding behaviour and seasonal differences in prey availability. Acta Parasitologica, 2017, 62, 471-476.	1.1	7
29	Molecular diversity and distribution of eastern Atlantic and Mediterranean dogfishes <i>Squalus</i> highlight taxonomic issues in the genus. Zoologica Scripta, 2017, 46, 414-428.	1.7	21
30	World without bordersâ€"genetic population structure of a highly migratory marine predator, the blue shark (<i>Prionace glauca</i>). Ecology and Evolution, 2017, 7, 4768-4781.	1.9	51
31	Forensic reconstruction of <i>lctalurus punctatus</i> invasion routes using on-line fishermen records. Knowledge and Management of Aquatic Ecosystems, 2017, , 56.	1.1	14
32	The Pillars of Hercules as a bathymetric barrier to gene flow promoting isolation in a global deepâ€sea shark (<i><scp>C</scp>entroscymnus coelolepis</i>). Molecular Ecology, 2015, 24, 6061-6079.	3.9	39
33	The Origin and Diversity of Cpt1 Genes in Vertebrate Species. PLoS ONE, 2015, 10, e0138447.	2.5	16
34	A tale of two seas: contrasting patterns of population structure in the small-spotted catshark across Europe. Royal Society Open Science, 2014, 1, 140175.	2.4	28
35	A new record of Callinectes sapidus in a western European estuary (Portuguese coast). Marine Biodiversity Records, 2014, 7, .	1.2	16
36	Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132669.	2.6	65

#	Article	IF	CITATIONS
37	Species diversity of the deep-water gulper sharks (Squaliformes: Centrophoridae:Centrophorus) in North Atlantic waters - current status and taxonomic issues. Zoological Journal of the Linnean Society, 2014, 172, 803-830.	2.3	28
38	Full westward expansion of (i>Rutilus rutilus (i>(Linnaeus, 1758) in the Iberian Peninsula. Journal of Applied Ichthyology, 2014, 30, 540-542.	0.7	12
39	Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 1—Redescription of Centrophorus granulosus (Bloch & Schneider), a senior synonym of C. acus Garman and C. niaukang Teng. Zootaxa, 2013, 3752, 35-72.	0.5	42
40	Genetic population structure and connectivity in a commercially exploited and wide-ranging deepwater shark, the leafscale gulper (Centrophorus squamosus). Marine and Freshwater Research, 2012, 63, 505.	1.3	33
41	Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus) Tj ETQq1 1 0.784	314 rgBT 2.5	/Oyerlock 10
42	Isolation and characterization of ten nuclear microsatellite loci for the Portuguese dogfish Centroscymnus coelolepis. Conservation Genetics Resources, 2011, 3, 299-301.	0.8	3
43	Frequency of Multiple Paternity in the Spiny Dogfish Squalus acanthias in the Western North Atlantic. Journal of Heredity, 2011, 102, 88-93.	2.4	28
44	Global population structure of the spiny dogfish <i>Squalus acanthias</i> , a temperate shark with an antitropical distribution. Molecular Ecology, 2010, 19, 1651-1662.	3.9	71
45	Nuclear microscopy: A tool for imaging elemental distribution and percutaneous absorption in vivo. Microscopy Research and Technique, 2007, 70, 302-309.	2.2	36
46	The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 119-123.	1.4	57
47	Using skin to assess iron accumulation in human metabolic disorders. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 697-701.	1.4	7
48	Skin morphology and layer identification using different STIM geometries. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 292-299.	1.4	28
49	Reproductive biology and embryonic development of Centroscymnus coelolepis in Portuguese mainland waters. ICES Journal of Marine Science, 2003, 60, 1335-1341.	2.5	34
50	From Rare Species Detection to Whole-Community Diversity Using High-Throughput Sequencing of Freshwater eDNA. Biodiversity Information Science and Standards, 0, 3, .	0.0	1
51	A genome assembly of the Atlantic chub mackerel (Scomber colias): aÂvaluable teleost fishing resource. GigaByte, 0, 2022, 1-21.	0.0	3