L J Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8806827/publications.pdf

Version: 2024-02-01

218592 265120 1,776 42 45 26 citations h-index g-index papers 45 45 45 1736 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cellulose derived carbon nanofiber: A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation. Science of the Total Environment, 2019, 694, 133705.	3.9	114
2	Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr(VI) reduction. Applied Surface Science, 2019, 478, 744-753.	3.1	94
3	Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceramics International, 2016, 42, 15235-15241.	2.3	84
4	Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes. Materials and Design, 2016, 109, 354-360.	3.3	72
5	A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrasonics Sonochemistry, 2013, 20, 892-899.	3.8	64
6	Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. Journal of Hazardous Materials, 2021, 413, 125305.	6.5	64
7	Enhanced degradation of bisphenol A by mixed ZIF derived CoZn oxide encapsulated N-doped carbon via peroxymonosulfate activation: The importance of N doping amount. Journal of Hazardous Materials, 2021, 419, 126363.	6.5	64
8	A Review of Processes for Removing Antibiotics from Breeding Wastewater. International Journal of Environmental Research and Public Health, 2021, 18, 4909.	1,2	63
9	Multifunctional ZnO-porous carbon composites derived from MOF-74(Zn) with ultrafast pollutant adsorption capacity and supercapacitance properties. Journal of Colloid and Interface Science, 2019, 554, 260-268.	5.0	60
10	Mechanistic studies on peroxymonosulfate activation by g-C3N4 under visible light for enhanced oxidation of light-inert dimethyl phthalate. Chinese Journal of Catalysis, 2020, 41, 322-332.	6.9	60
11	Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal. Chemosphere, 2020, 250, 126291.	4.2	58
12	Promoting Fe3+/Fe2+ cycling under visible light by synergistic interactions between P25 and small amount of Fenton reagents. Journal of Hazardous Materials, 2019, 379, 120795.	6.5	55
13	The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties. Journal of Cleaner Production, 2018, 196, 594-603.	4.6	53
14	Simultaneous removal of rhodamine B and Cr(VI) from water using cellulose carbon nanofiber incorporated with bismuth oxybromide: The effect of cellulose pyrolysis temperature on photocatalytic performance. Environmental Research, 2020, 185, 109414.	3.7	53
15	Mechanistic study on the combination of ultrasound and peroxymonosulfate for the decomposition of endocrine disrupting compounds. Ultrasonics Sonochemistry, 2020, 60, 104749.	3.8	52
16	Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites. Cellulose, 2018, 25, 4133-4144.	2.4	50
17	Graphene oxide incorporated alginate hydrogel beads for the removal of various organic dyes and bisphenol A in water. Colloid and Polymer Science, 2018, 296, 607-615.	1.0	49
18	Sonophotolytic degradation of dimethyl phthalate without catalyst: Analysis of the synergistic effect and modeling. Water Research, 2013, 47, 1996-2004.	5. 3	46

#	Article	IF	CITATIONS
19	Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms. Journal of Hazardous Materials, 2014, 275, 166-174.	6.5	41
20	Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution. Environmental Pollution, 2021, 276, 116691.	3.7	40
21	Degradation of emerging contaminants by sono-Fenton process with in situ generated H2O2 and the improvement by P25-mediated visible light irradiation. Journal of Hazardous Materials, 2020, 391, 122229.	6.5	38
22	Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism. Ecotoxicology and Environmental Safety, 2020, 191, 110156.	2.9	38
23	Efficient destruction of emerging contaminants in water by UV/S(IV) process with natural reoxygenation: Effect of pH on reactive species. Water Research, 2021, 198, 117143.	5.3	37
24	Sonophotolytic degradation of phthalate acid esters in water and wastewater: Influence of compound properties and degradation mechanisms. Journal of Hazardous Materials, 2015, 288, 43-50.	6.5	35
25	Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis. Chemical Engineering Journal, 2022, 430, 132828.	6.6	31
26	Regulation of the formation and structure of biofilms by quorum sensing signal molecules packaged in outer membrane vesicles. Science of the Total Environment, 2022, 806, 151403.	3.9	31
27	The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis. Journal of Hazardous Materials, 2016, 308, 386-393.	6.5	26
28	Reduced Graphene Oxide–P25 Nanocomposites as Efficient Photocatalysts for Degradation of Bisphenol A in Water. Catalysts, 2019, 9, 607.	1.6	26
29	Construction of ZIF@electrospun cellulose nanofiber derived N doped metallic cobalt embedded carbon nanofiber composite as binder-free supercapacitance electrode. Carbohydrate Polymers, 2021, 267, 118166.	5.1	26
30	Efficient degradation of bisphenol A using High-Frequency Ultrasound: Analysis of influencing factors and mechanistic investigation. Journal of Cleaner Production, 2019, 232, 1195-1203.	4.6	25
31	Utilization of photochemical circulation between NO3â^' and NO2â^' in water to degrade photoinert dimethyl phthalate: Influence of organic media and mechanism study. Applied Catalysis B: Environmental, 2019, 259, 117958.	10.8	24
32	High-efficient visible-light photocatalyst based on graphene incorporated Ag3PO4 nanocomposite applicable for the degradation of a wide variety of dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 70-79.	2.0	23
33	Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-co-doped polylactic acid. Polymer Bulletin, 2020, 77, 793-804.	1.7	23
34	Rational design of CoxMn3-xO4 embedded carbon composites from MOF-74 structure for boosted peroxymonosulfate activation: A dual pathway mechanism. Chemical Engineering Journal, 2022, 435, 134877.	6.6	22
35	Acetonitrile wastewater treatment enhanced by a hybrid membrane-aerated bioreactor containing aerated and non-aerated zones. Bioresource Technology, 2019, 289, 121754.	4.8	20
36	Boosted activity of \hat{I} -MnO2 by Kenaf derived carbon fiber for high-efficient oxidative degradation of bisphenol A in water. Materials and Design, 2021, 203, 109596.	3.3	19

#	Article	IF	CITATION
37	Waste preserved wood derived biochar catalyst for promoted peroxymonosulfate activation towards bisphenol A degradation with low metal ion release: The insight into the mechanisms. Science of the Total Environment, 2022, 813, 152673.	3.9	18
38	Photoactivation of peroxymonosulfate by wood pulp cellulose biochar/g-C3N4 composite for diclofenac degradation: the radical and nonradical pathways. Biochar, 2022, 4, .	6.2	17
39	Antibacterial, Flexible, and Conductive Membrane Based on MWCNTs/Ag Coated Electro-Spun PLA Nanofibrous Scaffolds as Wearable Fabric for Body Motion Sensing. Polymers, 2020, 12, 120.	2.0	15
40	A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. Bioresource Technology, 2020, 307, 123241.	4.8	12
41	Alginic acid/graphene oxide hydrogel film coated functional cotton fabric for controlled release of matrine and oxymatrine. RSC Advances, 2016, 6, 76420-76425.	1.7	10
42	Cobalt ferrite/cellulose membrane inserted catalytic syringe filter for facile in-situ filtration/degradation of emerging organic pollutants in water via activating peroxymonosulfate. Materials and Design, 2022, 220, 110817.	3.3	9
43	Enhancement of Sono-Fenton by P25-Mediated Visible Light Photocatalysis: Analysis of Synergistic Effect and Influence of Emerging Contaminant Properties. Catalysts, 2020, 10, 1297.	1.6	8
44	A comparative study on phenazone degradation by sulfate radicals based processes. Environmental Research, 2020, 191, 110054.	3.7	5
45	Coupling of (methaneÂ+Âair)-membrane biofilms and air-membrane biofilms: Treatment of p-nitroaniline wastewater. Journal of Hazardous Materials, 2022, 435, 128946.	6.5	2