
Woo-Bin Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8806568/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries. Energy and Environmental Materials, 2023, 6, .	7.3	2
2	Synergistic Effect of Cu ₂ O Mesh Pattern on Highâ€Facet Cu Surface for Selective CO ₂ Electroreduction to Ethanol. Advanced Materials, 2022, 34, e2106028.	11.1	44
3	Hierarchical Wrinkle-Structured Catalyst Layer/Membrane Interface for Ultralow Pt-Loading Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Nano Letters, 2022, 22, 1174-1182.	4.5	12
4	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments. Advanced Materials, 2022, 34, e2108900.	11.1	19
5	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	11.1	4
6	Three-dimensional SnO ₂ nanoparticles synthesized by joule heating as anode materials for lithium ion batteries. Nano Express, 2022, 3, 025005.	1.2	2
7	Highly enhanced tire performance achieved by using combined carbon nanotubes and soybean oil. Journal of Applied Polymer Science, 2021, 138, 49945.	1.3	6
8	Nanoscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 2576-2583.	4.0	15
9	Fabrication of Highly Monodisperse and Small-Grain Platinum Hole–Cylinder Nanoparticles as a Cathode Catalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2021, 4, 2514-2521.	2.5	3
10	Polyelemental Nanoparticles as Catalysts for a Li–O ₂ Battery. ACS Nano, 2021, 15, 4235-4244.	7.3	38
11	High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO ₂ Reduction into Ethanol. ACS Catalysis, 2021, 11, 5658-5665.	5.5	46
12	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	8.2	24
13	A comparative study of increased lithium storage with low resistance at structural defects in amorphous titanium dioxide electrode. Electrochimica Acta, 2021, 398, 139358.	2.6	4
14	Generation of high-density nanoparticles in the carbothermal shock method. Science Advances, 2021, 7, eabk2984.	4.7	23
15	Effect of Highly Periodic Au Nanopatterns on Dendrite Suppression in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60978-60986.	4.0	14
16	Confined cavity on a mass-producible wrinkle film promotes selective CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 14592-14599.	5.2	16
17	Mapping Graphene Grain Orientation by the Growth of WS ₂ Films with Oriented Cracks. Chemistry of Materials, 2020, 32, 7484-7491.	3.2	3

Highâ€Resolution Nanopatterning: Recent Progress in Simple and Costâ€Effective Topâ€Down Lithography for â‰î10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography (Adv.) Tj ETQq0 010.1gBT /Overlock 10

Woo-Bin Jung

#	Article	IF	CITATIONS
19	Recent Progress in Simple and Costâ€Effective Topâ€Down Lithography for â‰^10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography. Advanced Materials, 2020, 32, e1907101.	11.1	57
20	Polyelemental Nanolithography via Plasma Ion Bombardment: From Fabrication to Superior H ₂ Sensing Application. Advanced Materials, 2019, 31, e1805343.	11.1	38
21	Hierarchical Metal Oxide Wrinkles as Responsive Chemical Sensors. ACS Applied Nano Materials, 2019, 2, 5520-5526.	2.4	8
22	Relationship between Hydrogen Evolution and Wettability for Multiscale Hierarchical Wrinkles. ACS Applied Materials & Interfaces, 2019, 11, 7546-7552.	4.0	39
23	Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 17247-17255.	4.0	19
24	Subâ€5 nm Dendrimer Directed Selfâ€Assembly with Largeâ€Area Uniform Alignment by Graphoepitaxy. Advanced Functional Materials, 2019, 29, 1901876.	7.8	9
25	Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports. Carbon, 2019, 148, 370-377.	5.4	36
26	Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 1347-1355.	4.0	49
27	Distinct Mechanosensing of Human Neural Stem Cells on Extremely Limited Anisotropic Cellular Contact. ACS Applied Materials & Interfaces, 2018, 10, 33891-33900.	4.0	31
28	Monolithic Polymer Nanoridges with Programmable Wetting Transitions. Advanced Materials, 2018, 30, e1706657.	11.1	45
29	Springtail-inspired superomniphobic surface with extreme pressure resistance. Science Advances, 2018, 4, eaat4978.	4.7	112
30	Fabrication of a high-performance thin film polarizer using lyotropic chromonic liquid crystals using a high-resolution nanoscale template. Journal of Materials Chemistry C, 2017, 5, 12241-12248.	2.7	15
31	A three-dimensional metal grid mesh as a practical alternative to ITO. Nanoscale, 2016, 8, 14257-14263.	2.8	43
32	Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles. Nano Letters, 2016, 16, 3774-3779.	4.5	127
33	Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling. Nano Letters, 2016, 16, 7121-7127.	4.5	96
34	Complex Highâ€Aspectâ€Ratio Metal Nanostructures by Secondary Sputtering Combined with Block Copolymer Selfâ€Assembly. Advanced Materials, 2016, 28, 8439-8445.	11.1	26
35	Controlling Smectic Liquid Crystal Defect Patterns by Physical Stamping-Assisted Domain Separation and Their Use as Templates for Quantum Dot Cluster Arrays. Langmuir, 2016, 32, 13418-13426.	1.6	13
36	High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds. Nano Letters, 2016, 16, 4508-4515.	4.5	156

Woo-Bin Jung

#	Article	IF	CITATIONS
37	Polymerâ€Layerâ€Free Alignment for Fast Switching Nematic Liquid Crystals by Multifunctional Nanostructured Substrate. Advanced Materials, 2015, 27, 6760-6766.	11.1	12
38	Highly Enhanced Fluorescence Signals of Quantum Dot–Polymer Composite Arrays Formed by Hybridization of Ultrathin Plasmonic Au Nanowalls. Nano Letters, 2015, 15, 7273-7280.	4.5	38
39	Direct Observation of Highly Ordered Dendrimer Soft Building Blocks over a Large Area. Nano Letters, 2015, 15, 7552-7557.	4.5	19
40	Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS ₂ Layers. ACS Nano, 2015, 9, 9314-9321.	7.3	417
41	Direct Observation of Molybdenum Disulfide, MoS ₂ , Domains by Using a Liquid Crystalline Texture Method. Nano Letters, 2015, 15, 229-234.	4.5	30
42	Fabrication of 10 nm-Scale Complex 3D Nanopatterns with Multiple Shapes and Components by Secondary Sputtering Phenomenon. ACS Nano, 2014, 8, 1204-1212.	7.3	27