Woo-Bin Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8806568/publications.pdf

Version: 2024-02-01

331259 276539 1,740 42 21 41 citations h-index g-index papers 44 44 44 3006 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS ₂ Layers. ACS Nano, 2015, 9, 9314-9321.	7. 3	417
2	High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds. Nano Letters, 2016, 16, 4508-4515.	4.5	156
3	Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles. Nano Letters, 2016, 16, 3774-3779.	4.5	127
4	Springtail-inspired superomniphobic surface with extreme pressure resistance. Science Advances, 2018, 4, eaat4978.	4.7	112
5	Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling. Nano Letters, 2016, 16, 7121-7127.	4.5	96
6	Recent Progress in Simple and Costâ€Effective Topâ€Down Lithography for â‰^10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography. Advanced Materials, 2020, 32, e1907101.	11.1	57
7	Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1347-1355.	4.0	49
8	High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO ₂ Reduction into Ethanol. ACS Catalysis, 2021, 11, 5658-5665.	5.5	46
9	Monolithic Polymer Nanoridges with Programmable Wetting Transitions. Advanced Materials, 2018, 30, e1706657.	11.1	45
10	Synergistic Effect of Cu ₂ O Mesh Pattern on Highâ€Facet Cu Surface for Selective CO ₂ Electroreduction to Ethanol. Advanced Materials, 2022, 34, e2106028.	11.1	44
11	A three-dimensional metal grid mesh as a practical alternative to ITO. Nanoscale, 2016, 8, 14257-14263.	2.8	43
12	Relationship between Hydrogen Evolution and Wettability for Multiscale Hierarchical Wrinkles. ACS Applied Materials & Decreases, 2019, 11, 7546-7552.	4.0	39
13	Highly Enhanced Fluorescence Signals of Quantum Dot–Polymer Composite Arrays Formed by Hybridization of Ultrathin Plasmonic Au Nanowalls. Nano Letters, 2015, 15, 7273-7280.	4.5	38
14	Polyelemental Nanolithography via Plasma Ion Bombardment: From Fabrication to Superior H ₂ Sensing Application. Advanced Materials, 2019, 31, e1805343.	11.1	38
15	Polyelemental Nanoparticles as Catalysts for a Li–O ₂ Battery. ACS Nano, 2021, 15, 4235-4244.	7.3	38
16	Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports. Carbon, 2019, 148, 370-377.	5.4	36
17	Distinct Mechanosensing of Human Neural Stem Cells on Extremely Limited Anisotropic Cellular Contact. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33891-33900.	4.0	31
18	Direct Observation of Molybdenum Disulfide, MoS ₂ , Domains by Using a Liquid Crystalline Texture Method. Nano Letters, 2015, 15, 229-234.	4.5	30

#	Article	IF	Citations
19	Fabrication of 10 nm-Scale Complex 3D Nanopatterns with Multiple Shapes and Components by Secondary Sputtering Phenomenon. ACS Nano, 2014, 8, 1204-1212.	7.3	27
20	Complex Highâ€Aspectâ€Ratio Metal Nanostructures by Secondary Sputtering Combined with Block Copolymer Selfâ€Assembly. Advanced Materials, 2016, 28, 8439-8445.	11.1	26
21	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	8.2	24
22	Generation of high-density nanoparticles in the carbothermal shock method. Science Advances, 2021, 7, eabk2984.	4.7	23
23	Direct Observation of Highly Ordered Dendrimer Soft Building Blocks over a Large Area. Nano Letters, 2015, 15, 7552-7557.	4.5	19
24	Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17247-17255.	4.0	19
25	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments. Advanced Materials, 2022, 34, e2108900.	11.1	19
26	Confined cavity on a mass-producible wrinkle film promotes selective CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 14592-14599.	5.2	16
27	Fabrication of a high-performance thin film polarizer using lyotropic chromonic liquid crystals using a high-resolution nanoscale template. Journal of Materials Chemistry C, 2017, 5, 12241-12248.	2.7	15
28	Nanoscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2576-2583.	4.0	15
29	Effect of Highly Periodic Au Nanopatterns on Dendrite Suppression in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60978-60986.	4.0	14
30	Controlling Smectic Liquid Crystal Defect Patterns by Physical Stamping-Assisted Domain Separation and Their Use as Templates for Quantum Dot Cluster Arrays. Langmuir, 2016, 32, 13418-13426.	1.6	13
31	Polymerâ€Layerâ€Free Alignment for Fast Switching Nematic Liquid Crystals by Multifunctional Nanostructured Substrate. Advanced Materials, 2015, 27, 6760-6766.	11.1	12
32	Hierarchical Wrinkle-Structured Catalyst Layer/Membrane Interface for Ultralow Pt-Loading Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Nano Letters, 2022, 22, 1174-1182.	4.5	12
33	Subâ€5 nm Dendrimer Directed Selfâ€Assembly with Largeâ€Area Uniform Alignment by Graphoepitaxy. Advanced Functional Materials, 2019, 29, 1901876.	7.8	9
34	Hierarchical Metal Oxide Wrinkles as Responsive Chemical Sensors. ACS Applied Nano Materials, 2019, 2, 5520-5526.	2.4	8
35	Highly enhanced tire performance achieved by using combined carbon nanotubes and soybean oil. Journal of Applied Polymer Science, 2021, 138, 49945.	1.3	6
36	A comparative study of increased lithium storage with low resistance at structural defects in amorphous titanium dioxide electrode. Electrochimica Acta, 2021, 398, 139358.	2.6	4

#	Article	IF	CITATIONS
37	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	11.1	4
38	Mapping Graphene Grain Orientation by the Growth of WS ₂ Films with Oriented Cracks. Chemistry of Materials, 2020, 32, 7484-7491.	3.2	3
39	Fabrication of Highly Monodisperse and Small-Grain Platinum Hole–Cylinder Nanoparticles as a Cathode Catalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2021, 4, 2514-2521.	2.5	3
40	Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries. Energy and Environmental Materials, 2023, 6, .	7.3	2
41	Three-dimensional SnO ₂ nanoparticles synthesized by joule heating as anode materials for lithium ion batteries. Nano Express, 2022, 3, 025005.	1.2	2

Highâ€Resolution Nanopatterning: Recent Progress in Simple and Costâ€Effective Topâ€Down Lithography
for â‰^10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography (Adv.) Tj ETQq0 010.ngBT /Overlock 10