Liliana Bernardino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8806339/publications.pdf

Version: 2024-02-01

68 papers

3,778 citations

32 h-index 128067 60 g-index

68 all docs 68 docs citations

68 times ranked 6562 citing authors

#	Article	IF	Citations
1	Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, 235, 34-47.	4.8	1,018
2	Modulator Effects of Interleukin-1Â and Tumor Necrosis Factor-Â on AMPA-Induced Excitotoxicity in Mouse Organotypic Hippocampal Slice Cultures. Journal of Neuroscience, 2005, 25, 6734-6744.	1.7	204
3	Tumor Necrosis Factor-α Modulates Survival, Proliferation, and Neuronal Differentiation in Neonatal Subventricular Zone Cell Cultures. Stem Cells, 2008, 26, 2361-2371.	1.4	198
4	Inactivation of Caspase-1 in Rodent Brain: A Novel Anticonvulsive Strategy. Epilepsia, 2006, 47, 1160-1168.	2.6	159
5	MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. Journal of Controlled Release, 2016, 235, 291-305.	4.8	144
6	Histamine modulates microglia function. Journal of Neuroinflammation, 2012, 9, 90.	3.1	95
7	Neuropeptide Y Promotes Neurogenesis in Murine Subventricular Zone. Stem Cells, 2008, 26, 1636-1645.	1.4	88
8	Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. ACS Nano, 2011, 5, 97-106.	7.3	87
9	Polymeric Nanoparticles to Control the Differentiation of Neural Stem Cells in the Subventricular Zone of the Brain. ACS Nano, 2012, 6, 10463-10474.	7.3	85
10	Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X ₇ receptorâ€mediated ILâ€1β release. Journal of Neurochemistry, 2008, 106, 271-280.	2.1	78
11	Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. Journal of Neuroinflammation, 2016, 13, 137.	3.1	76
12	Neuropeptide Y inhibits interleukin- $1\hat{l}^2$ -induced phagocytosis by microglial cells. Journal of Neuroinflammation, 2011, 8, 169.	3.1	74
13	Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Frontiers in Cellular Neuroscience, 2014, 8, 120.	1.8	68
14	Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures. PLoS ONE, 2013, 8, e63529.	1.1	67
15	Retinoic acid-loaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson's disease. Frontiers in Aging Neuroscience, 2015, 7, 20.	1.7	67
16	Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nature Communications, 2020, 11, 4265.	5.8	65
17	The Angiogenic Factor Angiopoietin-1 Is a Proneurogenic Peptide on Subventricular Zone Stem/Progenitor Cells. Journal of Neuroscience, 2010, 30, 4573-4584.	1.7	62
18	MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochemical Pharmacology, 2017, 141, 118-131.	2.0	55

#	Article	IF	Citations
19	Impact of Neuroinflammation on Hippocampal Neurogenesis: Relevance to Aging and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, S161-S168.	1.2	54
20	Interaction between neuropeptide Y (NPY) and brainâ€derived neurotrophic factor in NPYâ€mediated neuroprotection against excitotoxicity: a role for microglia. European Journal of Neuroscience, 2008, 27, 2089-2102.	1.2	50
21	Oligodendrogenesis from neural stem cells: Perspectives for remyelinating strategies. International Journal of Developmental Neuroscience, 2013, 31, 692-700.	0.7	48
22	Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone. Stem Cells, 2012, 30, 773-784.	1.4	46
23	Response to Histamine Allows the Functional Identification of Neuronal Progenitors, Neurons, Astrocytes, and Immature Cells in Subventricular Zone Cell Cultures. Rejuvenation Research, 2008, 11, 187-200.	0.9	45
24	Inflammation and Neurogenesis in Temporal Lobe Epilepsy. CNS and Neurological Disorders, 2005, 4, 349-360.	4.3	44
25	Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Molecular Psychiatry, 2018, 23, 1031-1039.	4.1	44
26	Gold nanostructures: synthesis, properties, and neurological applications. Chemical Society Reviews, 2022, 51, 2601-2680.	18.7	43
27	Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology, 2012, 62, 2413-2423.	2.0	42
28	Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration. Neurobiology of Disease, 2016, 91, 262-273.	2.1	41
29	Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	41
30	Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale, 2016, 8, 8126-8137.	2.8	39
31	Dual role of histamine on microglia-induced neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 764-769.	1.8	38
32	Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nature Communications, 2017, 8, 747.	5.8	35
33	MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS ONE, 2018, 13, e0193609.	1.1	31
34	A nanoformulation for the preferential accumulation in adult neurogenic niches. Journal of Controlled Release, 2018, 284, 57-72.	4.8	30
35	Nanomedicine Approaches to Modulate Neural Stem Cells in Brain Repair. Trends in Biotechnology, 2016, 34, 437-439.	4.9	28
36	MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's disease. Molecular Therapy, 2022, 30, 3176-3192.	3.7	27

#	Article	IF	CITATIONS
37	Nanomedicine boosts neurogenesis: new strategies for brain repair. Integrative Biology (United) Tj ETQq1 1 0.784	314 rgBT	/9yerlock 1
38	Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Scientific Reports, 2019, 9, 8384.	1.6	26
39	Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles. Acta Biomaterialia, 2017, 59, 293-302.	4.1	24
40	Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease. Neurogenesis (Austin, Tex), 2016, 3, e1256855.	1.5	23
41	Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?. Frontiers in Cellular Neuroscience, 2014, 8, 59.	1.8	22
42	Microglia in Health and Disease: A Double-Edged Sword. Mediators of Inflammation, 2017, 2017, 1-2.	1.4	22
43	Characterization of a Parkinson's disease rat model using an upgraded paraquat exposure paradigm. European Journal of Neuroscience, 2020, 52, 3242-3255.	1.2	20
44	Galanin Promotes Neuronal Differentiation in Murine Subventricular Zone Cell Cultures. Stem Cells and Development, 2013, 22, 1693-1708.	1.1	19
45	Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1049-1050, 51-59.	1.2	19
46	New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis. Frontiers in Neuroscience, 2014, 8, 142.	1.4	18
47	Dual role of microglia in health and disease: pushing the balance toward repair. Frontiers in Cellular Neuroscience, 2015, 9, 51.	1.8	16
48	Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neuroscience Letters, 2018, 673, 116-121.	1.0	16
49	New insights into the regulatory roles of microRNAs in adult neurogenesis. Current Opinion in Pharmacology, 2020, 50, 38-45.	1.7	16
50	Functional Identification of Neural Stem Cell–Derived Oligodendrocytes by Means of Calcium Transients Elicited by Thrombin. Rejuvenation Research, 2010, 13, 27-37.	0.9	15
51	Heterocellular Contacts with Mouse Brain Endothelial Cells Via Laminin and $\hat{l}\pm6\hat{l}^21$ Integrin Sustain Subventricular Zone (SVZ) Stem/Progenitor Cells Properties. Frontiers in Cellular Neuroscience, 2016, 10, 284.	1.8	15
52	Combined neuroprotective action of adenosine A1 and cannabinoid CB1 receptors against NMDA-induced excitotoxicity in the hippocampus. Neurochemistry International, 2015, 87, 106-109.	1.9	14
53	Functional Evaluation of Neural Stem Cell Differentiation by Single Cell Calcium Imaging. Current Stem Cell Research and Therapy, 2011, 6, 288-296.	0.6	9
54	Vascular interâ€regulation of inflammation: molecular and cellular targets for <scp>CNS</scp> therapy. Journal of Neurochemistry, 2017, 140, 692-702.	2.1	9

#	Article	IF	CITATIONS
55	Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation. Journal of Neuroinflammation, 2022, 19, 11.	3.1	7
56	Challenging the great vascular wall: Can we envision a simple yet comprehensive therapy for stroke?. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e350-e354.	1.3	6
57	Functional Identification of Neural Stem Cell-Derived Oligodendrocytes. Methods in Molecular Biology, 2012, 879, 165-178.	0.4	4
58	Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Current Topics in Behavioral Neurosciences, 2021, , 261-288.	0.8	4
59	Subventricular Zone Cells as a Tool for Brain Repair. , 2007, , 81-108.		3
60	Editorial: Dual Role of Microglia in Health and Disease: Pushing the Balance Towards Repair. Frontiers in Cellular Neuroscience, 2020, 14, 259.	1.8	2
61	Histamine in the Neural and Cancer Stem Cell Niches. Stem Cells and Cancer Stem Cells, 2014, , 3-17.	0.1	2
62	Novel Role of Neuropeptide Y in the Modulation of Microglia Activity. Advances in Neuroimmune Biology, 2013, 4, 167-176.	0.7	1
63	Neural Stem Cell-Based Therapeutic Approaches for Brain Repair. , 2019, , 241-252.		1
64	Nanotechnology for intracellular delivery and targeting. , 2020, , 683-696.		1
65	C-Terminal Binding Proteins Promote Neurogenesis and Oligodendrogenesis in the Subventricular Zone. Frontiers in Cell and Developmental Biology, 2020, 8, 584220.	1.8	1
66	Histaminergic Regulation of Blood–Brain Barrier Activity. Receptors, 2016, , 215-230.	0.2	1
67	Absolute Threshold., 2008,, 3-3.		0
68	Inflammation and Neuronal Susceptibility to Excitotoxic Cell Death., 2007,, 3-35.		0