List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805784/publications.pdf Version: 2024-02-01

		136740	161609
133	3,624	32	54
papers	citations	h-index	g-index
137	137	137	3623
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Coronary artery anomalies overview: The normal and the abnormal. World Journal of Radiology, 2016, 8, 537.	0.5	242
2	Quantification of Absolute Myocardial Perfusion in Patients With Coronary Artery Disease. Journal of the American College of Cardiology, 2012, 60, 1546-1555.	1.2	206
3	Quantification of left atrial strain and strain rate using Cardiovascular Magnetic Resonance myocardial feature tracking: a feasibility study. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 60.	1.6	185
4	High-Resolution Magnetic Resonance Myocardial Perfusion Imaging at 3.0-Tesla to Detect Hemodynamically Significant Coronary Stenoses as Determined by Fractional Flow Reserve. Journal of the American College of Cardiology, 2011, 57, 70-75.	1.2	183
5	Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. European Heart Journal, 2014, 35, 1486-1495.	1.0	123
6	Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non–ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm, 2015, 12, 792-801.	0.3	112
7	Coronary Microvascular Dysfunction Is Associated With Myocardial Ischemia and Abnormal Coronary Perfusion During Exercise. Circulation, 2019, 140, 1805-1816.	1.6	107
8	Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nature Reviews Cardiology, 2020, 17, 427-450.	6.1	94
9	Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 28.	1.6	92
10	Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 2018, 11, 686-694.	2.3	72
11	Prognostic Impact of Late Gadolinium Enhancement by Cardiovascular Magnetic Resonance in Myocarditis. Circulation: Cardiovascular Imaging, 2021, 14, e011492.	1.3	71
12	Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary Microvascular Dysfunction in Patients With Acute Myocardial Infarction or Stable Angina Pectoris. American Journal of Cardiology, 2018, 121, 1-8.	0.7	70
13	Physiological Stratification of Patients With Angina Due to Coronary Microvascular Dysfunction. Journal of the American College of Cardiology, 2020, 75, 2538-2549.	1.2	68
14	Assessment of Coronary Artery Stenosis Severity and Location. JACC: Cardiovascular Imaging, 2013, 6, 600-609.	2.3	65
15	High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction. JACC: Cardiovascular Imaging, 2021, 14, 978-986.	2.3	62
16	Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 36.	1.6	58
17	Dark-blood late gadolinium enhancement without additional magnetization preparation. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 64.	1.6	52
18	Deepâ€Learningâ€Based Preprocessing for Quantitative Myocardial Perfusion MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 1689-1696.	1.9	52

#	Article	IF	CITATIONS
19	CAD Detection in Patients With Intermediate-High Pre-Test Probability. JACC: Cardiovascular Imaging, 2013, 6, 1062-1071.	2.3	49
20	Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking. Journal of Magnetic Resonance Imaging, 2016, 43, 128-137.	1.9	49
21	The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 21.	1.6	46
22	An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 53.	1.6	43
23	Perfusion phantom: An efficient and reproducible method to simulate myocardial firstâ€pass perfusion measurements with cardiovascular magnetic resonance. Magnetic Resonance in Medicine, 2013, 69, 698-707.	1.9	43
24	Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 4.	1.6	43
25	3D myocardial <i>T</i> ₁ mapping using saturation recovery. Journal of Magnetic Resonance Imaging, 2017, 46, 218-227.	1.9	43
26	Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 44.	1.6	43
27	Voxelâ€wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. Magnetic Resonance in Medicine, 2012, 68, 1994-2004.	1.9	40
28	Rationale and design of the Medical Research Council's Precision Medicine with Zibotentan in Microvascular Angina (PRIZE) trial. American Heart Journal, 2020, 229, 70-80.	1.2	40
29	Focal But Not Diffuse Myocardial Fibrosis Burden Quantification Using Cardiac Magnetic Resonance Imaging Predicts Left Ventricular Reverse Modeling Following Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 2016, 27, 203-209.	0.8	39
30	The Emerging Role of Cardiac Magnetic Resonance Imaging in the Evaluation of Patients with HFpEF. Current Heart Failure Reports, 2018, 15, 1-9.	1.3	36
31	Optimization of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 30.	1.6	34
32	Simultaneous multi slice (SMS) balanced steady state free precession first-pass myocardial perfusion cardiovascular magnetic resonance with iterative reconstruction at 1.5ÂT. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 84.	1.6	33
33	Importance of operator training and rest perfusion on the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 74.	1.6	33
34	Coronary Microcirculation in Aortic Stenosis. Circulation: Cardiovascular Interventions, 2019, 12, e007547.	1.4	33
35	Magnetic Resonance Cardiac Vein Imaging. JACC: Cardiovascular Imaging, 2008, 1, 729-738.	2.3	32
36	3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 94.	1.6	32

#	Article	IF	CITATIONS
37	Current perspectives in coronary microvascular dysfunction. Microcirculation, 2017, 24, e12340.	1.0	30
38	Optimal Use of Vasodilators for Diagnosis of Microvascular Angina in the Cardiac Catheterization Laboratory. Circulation: Cardiovascular Interventions, 2020, 13, e009019.	1.4	30
39	Myocardial Feature Tracking Reduces Observer-Dependence in Low-Dose Dobutamine Stress Cardiovascular Magnetic Resonance. PLoS ONE, 2015, 10, e0122858.	1.1	29
40	Hybrid positron emission tomography–magnetic resonance of the heart: current state of the art and future applications. European Heart Journal Cardiovascular Imaging, 2018, 19, 962-974.	0.5	29
41	Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 57.	1.6	28
42	Robust Non-Rigid Motion Compensation of Free-Breathing Myocardial Perfusion MRI Data. IEEE Transactions on Medical Imaging, 2019, 38, 1812-1820.	5.4	26
43	Coronary Imaging With Cardiovascular Magnetic Resonance: Current State of the Art. Progress in Cardiovascular Diseases, 2011, 54, 240-252.	1.6	25
44	Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 13.	1.6	25
45	Left ventricular myocardial deformation in Takotsubo syndrome: a cardiovascular magnetic resonance myocardial feature tracking study. European Radiology, 2018, 28, 5160-5170.	2.3	25
46	Atrial mechanics and their prognostic impact in Takotsubo syndrome: a cardiovascular magnetic resonance imaging study. European Heart Journal Cardiovascular Imaging, 2019, 20, 1059-1069.	0.5	25
47	A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model. European Heart Journal Cardiovascular Imaging, 2015, 16, 1082-1092.	0.5	24
48	Mean entropy predicts implantable cardioverter-defibrillator therapy using cardiac magnetic resonance texture analysis of scar heterogeneity. Heart Rhythm, 2019, 16, 1242-1250.	0.3	24
49	Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 96.	1.6	24
50	Dual Inversion-Recovery MR Imaging Sequence for Reduced Blood Signal on Late Gadolinium-enhanced Images of Myocardial Scar. Radiology, 2012, 264, 242-249.	3.6	23
51	Quantitative assessment of magnetic resonance derived myocardial perfusion measurements using advanced techniques: microsphere validation in an explanted pig heart system. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 82.	1.6	23
52	Myocardial Blood Flow Quantification From MRI by Deconvolution Using an Exponential Approximation Basis. IEEE Transactions on Biomedical Engineering, 2012, 59, 2060-2067.	2.5	22
53	Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterization using partial saturation (pSAT). Journal of Cardiovascular Magnetic Resonance, 2016, 19, 60.	1.6	22
54	Myocardial viability testing: all STICHed up, or about to be REVIVED?. European Heart Journal, 2022, 43, 118-126.	1.0	21

#	Article	IF	CITATIONS
55	Magnetic Resonance Coronary Angiography: Where Are We Today?. Current Cardiology Reports, 2013, 15, 328.	1.3	19
56	Perfusion cardiovascular magnetic resonance and fractional flow reserve in patients with angiographic multi-vessel coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 44.	1.6	17
57	Substrateâ€dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: The importance of T1 mapping in nonischemic patients. Journal of Cardiovascular Electrophysiology, 2017, 28, 785-795.	0.8	17
58	Temporal changes within mechanical dyssynchrony and rotational mechanics in Takotsubo syndrome: A cardiovascular magnetic resonance imaging study. International Journal of Cardiology, 2018, 273, 256-262.	0.8	17
59	Hierarchical Bayesian myocardial perfusion quantification. Medical Image Analysis, 2020, 60, 101611.	7.0	16
60	Physics-informed neural networks for myocardial perfusion MRI quantification. Medical Image Analysis, 2022, 78, 102399.	7.0	16
61	Effects of Tracer Arrival Time on the Accuracy of High-Resolution (Voxel-Wise) Myocardial Perfusion Maps from Contrast-Enhanced First-Pass Perfusion Magnetic Resonance. IEEE Transactions on Biomedical Engineering, 2014, 61, 2499-2506.	2.5	15
62	Combined simultaneous multislice bSSFP and compressed sensing for firstâ€pass myocardial perfusion at 1.5 T with high spatial resolution and coverage. Magnetic Resonance in Medicine, 2020, 84, 3103-3116.	1.9	15
63	A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom. Journal of Cardiovascular Computed Tomography, 2013, 7, 117-124.	0.7	14
64	Usefulness of Cardiac Magnetic Resonance Imaging to Measure Left Ventricular Wall Thickness for Determining Risk Scores for Sudden Cardiac Death in Patients With HypertrophicÂCardiomyopathy. American Journal of Cardiology, 2017, 119, 1450-1455.	0.7	14
65	Demographic, multi-morbidity and genetic impact on myocardial involvement and its recovery from COVID-19: protocol design of COVID-HEART—a UK, multicentre, observational study. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 77.	1.6	14
66	Automated Quantitative Stress Perfusion Cardiac Magnetic Resonance in Pediatric Patients. Frontiers in Pediatrics, 2021, 9, 699497.	0.9	14
67	Cardiac magnetic resonance stress testing: Results and prognosis. Current Cardiology Reports, 2009, 11, 54-60.	1.3	13
68	Danish study of Non-Invasive testing in Coronary Artery Disease 2 (Dan-NICAD 2): Study design for a controlled study of diagnostic accuracy. American Heart Journal, 2019, 215, 114-128.	1.2	13
69	Artificial Intelligence in Cardiac MRI: Is Clinical Adoption Forthcoming?. Frontiers in Cardiovascular Medicine, 2021, 8, 818765.	1.1	13
70	Rationale and design of the Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) diagnostic study: the CorMicA CMR sub-study. Open Heart, 2018, 5, e000924.	0.9	12
71	3D SASHA myocardial T1 mapping with high accuracy and improved precision. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 281-289.	1.1	12
72	Histopathological Validation of Darkâ€Blood Late Gadolinium Enhancement MRI Without Additional Magnetization Preparation. Journal of Magnetic Resonance Imaging, 2021, , .	1.9	12

AMEDEO CHIRIBIRI

#	Article	IF	CITATIONS
73	Quantitative assessment of left ventricular mechanical dyssynchrony using cine cardiovascular magnetic resonance imaging: Inter-study reproducibility. JRSM Cardiovascular Disease, 2017, 6, 204800401771014.	0.4	11
74	ls heart rate response a reliable marker of adenosine-induced coronary hyperemia?. International Journal of Cardiovascular Imaging, 2018, 34, 1117-1125.	0.7	11
75	Right ventricular strain assessment by cardiovascular magnetic resonance myocardial feature tracking allows optimized risk stratification in Takotsubo syndrome. PLoS ONE, 2018, 13, e0202146.	1.1	11
76	The alcohol-induced cardiomyopathy: A cardiovascular magnetic resonance characterization. International Journal of Cardiology, 2021, 331, 131-137.	0.8	10
77	Simultaneous 13N-Ammonia and gadolinium first-pass myocardial perfusion with quantitative hybrid PET-MR imaging: a phantom and clinical feasibility study. European Journal of Hybrid Imaging, 2019, 3, 15.	0.6	10
78	High-resolution non-contrast free-breathing coronary cardiovascularÃ,Âmagnetic resonance angiography for detection of coronary artery disease: validation against invasive coronary angiography. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 26.	1.6	10
79	Enhancing coronary Wave Intensity Analysis robustness by high order central finite differences. Artery Research, 2014, 8, 98.	0.3	9
80	Microsphere skimming in the porcine coronary arteries: Implications for flow quantification. Microvascular Research, 2015, 100, 59-70.	1.1	9
81	Influence of spatial resolution on the accuracy of quantitative myocardial perfusion in first pass stress perfusion CMR. Magnetic Resonance in Medicine, 2015, 73, 1623-1631.	1.9	9
82	Feasibility of simultaneous PET-MR perfusion using a novel cardiac perfusion phantom. European Journal of Hybrid Imaging, 2017, 1, 4.	0.6	8
83	Impact of Field Strength in Clinical Cardiac Magnetic Resonance Imaging. Investigative Radiology, 2021, Publish Ahead of Print, 764-772.	3.5	8
84	How to do quantitative myocardial perfusion cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2022, 23, 315-318.	0.5	8
85	CArdiac MagnEtic resonance assessment of bi-Atrial fibrosis in secundum atrial septal defects patients: CAMERA-ASD study. European Heart Journal Cardiovascular Imaging, 2022, 23, 1231-1239.	0.5	8
86	Fast myocardial T ₁ mapping using shortened inversion recovery based schemes. Journal of Magnetic Resonance Imaging, 2019, 50, 641-654.	1.9	7
87	Young athletes: Preventing sudden death by adopting a modern screening approach? A critical review and the opening of a debate. IJC Heart and Vasculature, 2021, 34, 100790.	0.6	7
88	Dark-blood late gadolinium enhancement CMR improves detection of papillary muscle fibrosis in patients with mitral valve prolapse. European Journal of Radiology, 2022, 147, 110118.	1.2	7
89	Evaluation of aortic stenosis: From Bernoulli and Doppler to Navier-Stokes. Trends in Cardiovascular Medicine, 2021, , .	2.3	7
90	Perfusion dyssynchrony analysis. European Heart Journal Cardiovascular Imaging, 2016, 17, 1414-1423.	0.5	6

AMEDEO CHIRIBIRI

#	Article	IF	CITATIONS
91	Deleterious Effects of Cold Air Inhalation on Coronary Physiological Indices in Patients With Obstructive Coronary Artery Disease. Journal of the American Heart Association, 2018, 7, e008837.	1.6	6
92	FASt singleâ€breathhold 2D multislice myocardial T 1 mapping (FAST1) at 1.5T for full left ventricular coverage in three breathholds. Journal of Magnetic Resonance Imaging, 2020, 51, 492-504.	1.9	6
93	Feasibility of free-breathing quantitative myocardial perfusion using multi-echo Dixon magnetic resonance imaging. Scientific Reports, 2020, 10, 12684.	1.6	6
94	A fast navigator (fastNAV) for prospective respiratory motion correction in firstâ€pass myocardial perfusion imaging. Magnetic Resonance in Medicine, 2021, 85, 2661-2671.	1.9	6
95	Influence of the arterial input sampling location on the diagnostic accuracy of cardiovascular magnetic resonance stressÂmyocardial perfusion quantification. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 35.	1.6	6
96	Comparison of the within-reader and inter-vendor agreement of left ventricular circumferential strains and volume indices derived from cardiovascular magnetic resonance imaging. PLoS ONE, 2020, 15, e0242908.	1.1	6
97	Cost-effectiveness in diagnosis of stable angina patients: a decision-analytical modelling approach. Open Heart, 2022, 9, e001700.	0.9	6
98	Quantitative Assessment of Perfusion – Where Are We Now?. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.4	5
99	Noninvasive anatomical and functional assessment of coronary artery disease. Revista Portuguesa De Cardiologia, 2015, 34, 223-232.	0.2	5
100	Impact of coronary bifurcation morphology on wave propagation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H855-H870.	1.5	5
101	Cardiac magnetic resonance in patients with ARVC and family members: the potential role of native T1 mapping. International Journal of Cardiovascular Imaging, 2021, 37, 2037-2047.	0.7	5
102	Multimodality Imaging of Heart Valve Disease. Arquivos Brasileiros De Cardiologia, 2014, 103, 251-63.	0.3	5
103	Clinical Application of Dynamic Contrast Enhanced Perfusion Imaging by Cardiovascular Magnetic Resonance. Frontiers in Cardiovascular Medicine, 2021, 8, 768563.	1.1	5
104	Simultaneous multislice steadyâ€state free precession myocardial perfusion with full left ventricular coverage and high resolution at 1.5 T. Magnetic Resonance in Medicine, 2022, 88, 663-675.	1.9	5
105	Myocardial Blood Flow Quantification from MRI – an Image Analysis Perspective. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.4	4
106	Impact of the Arterial Input Sampling Location on CMR First-Pass Myocardial Perfusion Quantification. JACC: Cardiovascular Imaging, 2020, 13, 2693-2695.	2.3	4
107	Pixelâ€wise assessment of cardiovascular magnetic resonance firstâ€pass perfusion using a cardiac phantom mimicking transmural myocardial perfusion gradients. Magnetic Resonance in Medicine, 2020, 84, 2871-2884.	1.9	4
108	A Boolean Dilemma. JACC: Case Reports, 2021, 3, 112-116.	0.3	4

AMEDEO CHIRIBIRI

#	Article	IF	CITATIONS
109	3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 62.	1.6	4
110	2D high resolution vs. 3D whole heart myocardial perfusion cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2022, 23, 811-819.	0.5	4
111	The Role of Al in Characterizing the DCM Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 787614.	1.1	4
112	Allâ€systolic firstâ€pass myocardial rest perfusion at a long saturation time using simultaneous multiâ€slice imaging and compressed sensing acceleration. Magnetic Resonance in Medicine, 2021, 86, 663-676.	1.9	3
113	CardiSort: a convolutional neural network for cross vendor automated sorting of cardiac MR images. European Radiology, 2022, 32, 5907-5920.	2.3	3
114	Multimodal Imaging for Diagnosis of Anomalous Coronary Artery With Subsequent Myocardial Infarction. JACC: Case Reports, 2021, 3, 1310-1314.	0.3	2
115	Model-Based Reconstruction for Highly Accelerated First-Pass Perfusion Cardiac MRI. Lecture Notes in Computer Science, 2019, , 514-522.	1.0	2
116	Impact of Temporal Resolution and Methods for Correction on Cardiac Magnetic Resonance Perfusion Quantification. Journal of Magnetic Resonance Imaging, 2022, , .	1.9	2
117	High-Resolution Free-Breathing Quantitative First-Pass Perfusion Cardiac MR Using Dual-Echo Dixon With Spatio-Temporal Acceleration. Frontiers in Cardiovascular Medicine, 2022, 9, 884221.	1.1	2
118	Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2023, 24, 364-372.	0.5	2
119	Aâ€Unravelling the Mechanisms of Exercise Induced Ischaemia, its Optimal Assessment, and Alleviation with Nitroglycerine. Heart, 2014, 100, A124.2-A125.	1.2	1
120	Multimodality Imaging of Extensive Caseating Intramyocardial Calcification Secondary to Lymphoma. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	1
121	The impact of dark-blood versus conventional bright-blood late gadolinium enhancement on the myocardial ischemic burden. European Journal of Radiology, 2021, 144, 109947.	1.2	1
122	Mechanisms of exertional angina in patients with normal coronary arteries. Clinical Medicine, 2020, 20, s44-s45.	0.8	1
123	Does Late Enhancement Imaging Decipher the Role of Myocardial Fibrosis in Hypertrophic Cardiomyopathy?. Current Cardiovascular Imaging Reports, 2011, 4, 87-89.	0.4	0
124	Lord of the imaging rings — Takayasu's aortitis. International Journal of Cardiology, 2015, 182, 219-221.	0.8	0
125	An unusual cause of ventricular tachycardia. European Heart Journal, 2016, 37, 654-654.	1.0	0
126	021â€Perfusion cardiovascular magnetic resonance (CMR) – can david (resolution) take on goliath (coverage) again?. Heart, 2017, 103, A17.2-A18.	1.2	0

#	Article	IF	CITATIONS
127	Cardiac Perfusion MRI. , 2018, , 471-485.		Ο
128	Pulmonary arteriovenous malformations and embolic myocardial infarction identified with cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2019, 20, 1430-1431.	0.5	0
129	Quantification of balanced SSFP myocardial perfusion imaging at 1.5 T: Impact of the reference image. Magnetic Resonance in Medicine, 2022, 87, 702-717.	1.9	0
130	Physics-Informed Self-supervised Deep Learning Reconstruction for Accelerated First-Pass Perfusion Cardiac MRI. Lecture Notes in Computer Science, 2021, , 86-95.	1.0	0
131	Cardiac magnetic resonance perfusion abnormality due to anaemia. European Heart Journal Cardiovascular Imaging, 2021, , .	0.5	0
132	From the Epicardial Vessels toÂtheÂMicrocirculation. JACC: Cardiovascular Imaging, 2021, 14, 2334-2336.	2.3	0
133	Simultaneous multi-slice steady-state free precession myocardial perfusion with iterative reconstruction and integrated motion compensation. European Journal of Radiology, 2022, 151, 110286.	1.2	Ο