A Lee Miller Ii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc-doped hydroxyapatite and poly(propylene fumarate) nanocomposite scaffold for bone tissue engineering. Journal of Materials Science, 2022, 57, 5998-6012.	1.7	4
2	Injectable pH-responsive adhesive hydrogels for bone tissue engineering inspired by the underwater attachment strategy of marine mussels. Materials Science and Engineering C, 2022, 133, 112606.	3.8	5
3	Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. Polymer Reviews, 2021, 61, 319-356.	5.3	14
4	<scp>3D</scp> bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 6-17.	2.1	22
5	Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent <scp>MC3T3</scp> cell attachment, proliferation, and differentiation. Journal of Biomedical Materials Research - Part A, 2021, 109, 1633-1645.	2.1	8
6	Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins. Biomedicines, 2021, 9, 479.	1.4	13
7	Bifunctional hydrogel for potential vascularized bone tissue regeneration. Materials Science and Engineering C, 2021, 124, 112075.	3.8	13
8	CT-based structural analyses of vertebral fractures with polymeric augmentation: A study of cadaveric three-level spine segments. Computers in Biology and Medicine, 2021, 133, 104395.	3.9	3
9	Three-dimensional surface strain analyses of simulated defect and augmented spine segments: A biomechanical cadaveric study. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104559.	1.5	5
10	Injectable catalyst-free "click―organic-inorganic nanohybrid (click-ON) cement for minimally invasive in vivo bone repair. Biomaterials, 2021, 276, 121014.	5.7	18
11	Phosphate functionalization and enzymatic calcium mineralization synergistically enhance oligo[poly(ethylene glycol) fumarate] hydrogel osteoconductivity for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2020, 108, 515-527.	2.1	17
12	OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy. Applied Sciences (Switzerland), 2020, 10, 6912.	1.3	1
13	Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 4653-4665.	2.6	46
14	3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomaterialia, 2020, 111, 129-140.	4.1	69
15	Injectable Catalyst-Free Poly(Propylene Fumarate) System Cross-Linked by Strain Promoted Alkyne–Azide Cycloaddition Click Chemistry for Spine Defect Filling. Biomacromolecules, 2019, 20, 3352-3365.	2.6	18
16	Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polymer Chemistry, 2019, 10, 705-717.	1.9	15
17	Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Applied Materials & Interfaces, 2019, 11, 23558-23572.	4.0	101
18	Strontiumâ€substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. Journal of Biomedical Materials Research - Part A, 2019, 107, 631-642.	2.1	22

A LEE MILLER II

#	Article	IF	CITATIONS
19	Fast functionalization of ultrasound microbubbles using strain promoted click chemistry. Biomaterials Science, 2018, 6, 623-632.	2.6	18
20	Crossâ€linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 1247-1257.	2.1	10
21	Threeâ€dimensional porous poly(propylene fumarate)â€ <i>co</i> â€poly(lacticâ€ <i>co</i> â€glycolic acid) scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 2507-2517.	2.1	8
22	Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydrate Polymers, 2018, 192, 308-316.	5.1	87
23	Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury. New Journal of Chemistry, 2018, 42, 17671-17681.	1.4	63
24	Poly(Propylene Fumarate)–Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages. Journal of Biomechanical Engineering, 2018, 140, .	0.6	11
25	Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS Applied Materials & Interfaces, 2017, 9, 14677-14690.	4.0	179
26	A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages. Tissue Engineering - Part A, 2017, 23, 223-232.	1.6	12
27	Novel porous poly(propylene fumarateâ€coâ€caprolactone) scaffolds fabricated by thermally induced phase separation. Journal of Biomedical Materials Research - Part A, 2017, 105, 226-235.	2.1	18
28	Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses. Journal of Materials Chemistry B, 2016, 4, 6930-6941.	2.9	63
29	Poly(ε-caprolactone) Dendrimer Cross-Linked via Metal-Free Click Chemistry: Injectable Hydrophobic Platform for Tissue Engineering. ACS Macro Letters, 2016, 5, 1261-1265.	2.3	35
30	Novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC Advances, 2015, 5, 21301-21309.	1.7	32
31	Tunable tissue scaffolds fabricated by in situ crosslink in phase separation system. RSC Advances, 2015, 5, 100824-100833.	1.7	24
32	Biodegradable and crosslinkable PPF–PLGA–PEG self-assembled nanoparticles dual-decorated with folic acid ligands and Rhodamine B fluorescent probes for targeted cancer imaging. RSC Advances, 2015, 5, 33275-33282.	1.7	31
33	Hydrolysable core crosslinked particles for receptor-mediated pH-sensitive anticancer drug delivery. New Journal of Chemistry, 2015, 39, 8840-8847.	1.4	12