Steven J M Jones

List of Publications by Citations

Source: https://exaly.com/author-pdf/8805666/steven-j-m-jones-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 473
 125,785
 127
 353

 papers
 citations
 h-index
 g-index

 487
 151,915
 13
 9.25

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
473	Comprehensive molecular portraits of human breast tumours. <i>Nature</i> , 2012 , 490, 61-70	50.4	8025
472	Circos: an information aesthetic for comparative genomics. <i>Genome Research</i> , 2009 , 19, 1639-45	9.7	6014
471	Comprehensive molecular characterization of human colon and rectal cancer. <i>Nature</i> , 2012 , 487, 330-7	50.4	5640
47°	The Cancer Genome Atlas Pan-Cancer analysis project. <i>Nature Genetics</i> , 2013 , 45, 1113-20	36.3	3933
469	Integrative analysis of 111 reference human epigenomes. <i>Nature</i> , 2015 , 518, 317-30	50.4	3849
468	Comprehensive molecular characterization of gastric adenocarcinoma. <i>Nature</i> , 2014 , 513, 202-9	50.4	3659
467	Comprehensive molecular profiling of lung adenocarcinoma. <i>Nature</i> , 2014 , 511, 543-50	50.4	3310
466	The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313, 1596-604	33.3	3205
465	Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. <i>New England Journal of Medicine</i> , 2013 , 368, 2059-74	59.2	3137
464	Comprehensive genomic characterization of squamous cell lung cancers. <i>Nature</i> , 2012 , 489, 519-25	50.4	2820
463	Integrated genomic characterization of endometrial carcinoma. <i>Nature</i> , 2013 , 497, 67-73	50.4	2800
462	ABySS: a parallel assembler for short read sequence data. <i>Genome Research</i> , 2009 , 19, 1117-23	9.7	2508
461	Comprehensive genomic characterization of head and neck squamous cell carcinomas. <i>Nature</i> , 2015 , 517, 576-82	50.4	2332
460	Comprehensive molecular characterization of clear cell renal cell carcinoma. <i>Nature</i> , 2013 , 499, 43-9	50.4	2184
459	Comprehensive molecular characterization of urothelial bladder carcinoma. <i>Nature</i> , 2014 , 507, 315-22	50.4	1963
458	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98	59.2	1828
457	Genomic Classification of Cutaneous Melanoma. <i>Cell</i> , 2015 , 161, 1681-96	56.2	1807

456	The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 2004, 306, 636-40	33.3	1692
455	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. <i>Nature</i> , 2004 , 428, 493-521	50.4	1689
454	Integrated genomic characterization of papillary thyroid carcinoma. <i>Cell</i> , 2014 , 159, 676-90	56.2	1660
453	The Genome sequence of the SARS-associated coronavirus. <i>Science</i> , 2003 , 300, 1399-404	33.3	1632
452	International network of cancer genome projects. <i>Nature</i> , 2010 , 464, 993-8	50.4	1613
451	Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 16899-903	11.5	1457
450	The clonal and mutational evolution spectrum of primary triple-negative breast cancers. <i>Nature</i> , 2012 , 486, 395-9	50.4	1417
449	Conserved role of intragenic DNA methylation in regulating alternative promoters. <i>Nature</i> , 2010 , 466, 253-7	50.4	1298
448	Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. <i>Nature Genetics</i> , 2010 , 42, 181-5	36.3	1273
447	ARID1A mutations in endometriosis-associated ovarian carcinomas. <i>New England Journal of Medicine</i> , 2010 , 363, 1532-43	59.2	1208
446	Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. <i>Nature</i> , 2011 , 476, 298-303	50.4	1180
445	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. <i>Cell</i> , 2016 , 164, 550-63	56.2	1140
444	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. <i>Cell</i> , 2017 , 169, 1327-1341.e23	56.2	1125
443	Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. <i>Nature Methods</i> , 2007 , 4, 651-7	21.6	1077
442	Evolutionary and biomedical insights from the rhesus macaque genome. <i>Science</i> , 2007 , 316, 222-34	33.3	1072
441	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. <i>Cell</i> , 2015 , 163, 506-19	56.2	1055
440	Integrated genomic characterization of oesophageal carcinoma. <i>Nature</i> , 2017 , 541, 169-175	50.4	965
439	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. <i>Cell</i> , 2017 , 171, 540-556	. e ;2652	961

438	Tumor-associated macrophages and survival in classic Hodgkinß lymphoma. <i>New England Journal of Medicine</i> , 2010 , 362, 875-85	59.2	961
437	Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. <i>Cell</i> , 2014 , 158, 929-944	56.2	935
436	Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. <i>Science</i> , 2014 , 343, 189-193	33.3	912
435	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. <i>Cancer Cell</i> , 2017 , 32, 185-2	<u>03</u> . g 1	3 896
434	Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. <i>Nature</i> , 2009 , 461, 809-13	50.4	879
433	The genome sequence of taurine cattle: a window to ruminant biology and evolution. <i>Science</i> , 2009 , 324, 522-8	33.3	863
432	Integrated genomic and molecular characterization of cervical cancer. <i>Nature</i> , 2017 , 543, 378-384	50.4	755
431	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. <i>New England Journal of Medicine</i> , 2016 , 374, 135-45	59.2	753
430	Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. <i>Nature</i> , 2000 , 408, 331-6	50.4	753
429	A physical map of the human genome. <i>Nature</i> , 2001 , 409, 934-41	50.4	732
428	The genetic landscape of high-risk neuroblastoma. <i>Nature Genetics</i> , 2013 , 45, 279-84	36.3	717
427	Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. <i>Nature</i> , 2005 , 434, 462-9	50.4	717
426	De novo assembly and analysis of RNA-seq data. <i>Nature Methods</i> , 2010 , 7, 909-12	21.6	701
425	The Atlantic salmon genome provides insights into rediploidization. <i>Nature</i> , 2016 , 533, 200-5	50.4	606
424	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. <i>Nature</i> , 2012 , 488, 49-56	50.4	596
423	The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. <i>Science</i> , 2005 , 307, 1321-4	33.3	580
422	Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. <i>Nature Communications</i> , 2014 , 5, 5241	17.4	573
421	Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. <i>New England Journal of Medicine</i> , 2011 , 364, 730-9	59.2	561

(2008-2009)

420	Mutation of FOXL2 in granulosa-cell tumors of the ovary. <i>New England Journal of Medicine</i> , 2009 , 360, 2719-29	59.2	551
419	The somatic genomic landscape of chromophobe renal cell carcinoma. <i>Cancer Cell</i> , 2014 , 26, 319-330	24.3	521
418	Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. <i>Cancer Cell</i> , 2012 , 22, 153-66	24.3	515
417	The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15582-7	11.5	515
416	The whole-genome landscape of medulloblastoma subtypes. <i>Nature</i> , 2017 , 547, 311-317	50.4	472
415	MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. <i>Nature</i> , 2011 , 471, 377-81	50.4	467
414	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. <i>Cell</i> , 2017 , 171, 950-965.e28	56.2	451
413	MEG3 long noncoding RNA regulates the TGF-[pathway genes through formation of RNA-DNA triplex structures. <i>Nature Communications</i> , 2015 , 6, 7743	17.4	414
412	The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). <i>Genome Research</i> , 2004 , 14, 2121-7	9.7	404
411	The chromatin accessibility landscape of primary human cancers. <i>Science</i> , 2018 , 362,	33.3	392
410	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. <i>Cancer Cell</i> , 2017 , 32, 204-220.e15	24.3	391
409	Assembling millions of short DNA sequences using SSAKE. <i>Bioinformatics</i> , 2007 , 23, 500-1	7.2	357
408	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. <i>Cancer Cell</i> , 2017 , 31, 181-193	24.3	350
407	A functional genomic analysis of cell morphology using RNA interference. <i>Journal of Biology</i> , 2003 , 2, 27		338
406	Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. <i>New England Journal of Medicine</i> , 2012 , 366, 234-42	59.2	332
405	De novo transcriptome assembly with ABySS. <i>Bioinformatics</i> , 2009 , 25, 2872-7	7.2	326
404	Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. <i>BioTechniques</i> , 2008 , 45, 81-94	2.5	322
403	Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. <i>PLoS Biology</i> , 2008 , 6, e65	9.7	315

402	DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. <i>Cell Stem Cell</i> , 2011 , 8, 676-87	18	309
401	CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. <i>Nature Genetics</i> , 2017 , 49, 170-174	36.3	308
400	ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. <i>Cell</i> , 2010 , 143, 367-78	56.2	297
399	Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. <i>Blood</i> , 2013 , 122, 1256-65	2.2	289
398	High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. <i>PLoS Biology</i> , 2007 , 5, e237	9.7	285
397	A physical map of the mouse genome. <i>Nature</i> , 2002 , 418, 743-50	50.4	282
396	Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. <i>Bioinformatics</i> , 2013 , 29, 1492-7	7.2	278
395	Transcriptome analysis of the normal human mammary cell commitment and differentiation process. <i>Cell Stem Cell</i> , 2008 , 3, 109-18	18	274
394	Next-generation tag sequencing for cancer gene expression profiling. <i>Genome Research</i> , 2009 , 19, 1825	5-3 <i>5</i> 7	271
393	IslandPath: aiding detection of genomic islands in prokaryotes. <i>Bioinformatics</i> , 2003 , 19, 418-20	7.2	263
392	Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. <i>PLoS Genetics</i> , 2014 , 10, e100426	1 ⁶	260
391	Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. <i>Chemistry and Biology</i> , 1998 , 5, 155-62		252
390	Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. <i>Genome Research</i> , 2004 , 14, 478-90	9.7	251
389	Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. <i>American Journal of Human Genetics</i> , 2006 , 79, 500-13	11	247
388	FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. <i>Bioinformatics</i> , 2008 , 24, 1729-30	7.2	234
387	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. <i>Cell</i> , 2016 , 167, 1145-1149	56.2	232
386	Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. <i>Journal of Clinical Oncology</i> , 2006 , 24, 5043-51	2.2	232
385	Characterization of HPV and host genome interactions in primary head and neck cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15544-9	11.5	229

(2006-2010)

384	Alternative expression analysis by RNA sequencing. <i>Nature Methods</i> , 2010 , 7, 843-7	21.6	227
383	Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. <i>Journal of Pathology</i> , 2012 , 226, 7-16	9.4	226
382	Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biology, 2010, 11, 403	18.3	216
381	Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. <i>Genome Biology</i> , 2013 , 14, R27	18.3	212
380	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423	24.3	210
379	14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 929-34	11.5	208
378	Divergent clonal selection dominates medulloblastoma at recurrence. <i>Nature</i> , 2016 , 529, 351-7	50.4	206
377	Functional genomics of the cilium, a sensory organelle. <i>Current Biology</i> , 2005 , 15, 935-41	6.3	206
376	Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. <i>Cancer Research</i> , 2008 , 68, 8210-20	10.1	200
375	ORegAnno: an open-access community-driven resource for regulatory annotation. <i>Nucleic Acids Research</i> , 2008 , 36, D107-13	20.1	199
374	Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. <i>Plant, Cell and Environment</i> , 2006 , 29, 1545-70	8.4	197
373	Mutations in EZH2 cause Weaver syndrome. <i>American Journal of Human Genetics</i> , 2012 , 90, 110-8	11	190
372	Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. <i>Cancer Cell</i> , 2014 , 26, 33-47	24.3	181
371	A SAGE approach to discovery of genes involved in autophagic cell death. <i>Current Biology</i> , 2003 , 13, 358	-6.3	181
370	FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project. <i>American Journal of Human Genetics</i> , 2014 , 94, 809-17	11	174
369	The new paradigm of flow cell sequencing. <i>Genome Research</i> , 2008 , 18, 839-46	9.7	165
368	Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 2504-9	11.5	161
367	Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. <i>Genome Research</i> , 2006 , 16, 1455-64	9.7	161

366	Genomics of hybrid poplar (Populus trichocarpax deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. <i>Molecular Ecology</i> , 2006 , 15, 1275-9	5.7 9 7	159
365	Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. <i>Genome Research</i> , 2005 , 15, 603-15	9.7	158
364	Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. <i>American Journal of Human Genetics</i> , 2013 , 93, 915-25	11	155
363	Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. <i>Nature Cell Biology</i> , 2015 , 17, 311-21	23.4	155
362	Novel avian influenza H7N3 strain outbreak, British Columbia. <i>Emerging Infectious Diseases</i> , 2004 , 10, 2192-5	10.2	154
361	Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. <i>BMC Genomics</i> , 2010 , 11, 279	4.5	151
360	The Integrated Genomic Landscape of Thymic Epithelial Tumors. <i>Cancer Cell</i> , 2018 , 33, 244-258.e10	24.3	150
359	Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. <i>Nature Genetics</i> , 2020 , 52, 231-240	36.3	148
358	Hive plotsrational approach to visualizing networks. <i>Briefings in Bioinformatics</i> , 2012 , 13, 627-44	13.4	148
357	Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. <i>Genome Research</i> , 2008 , 18, 1906-17	9.7	147
356	Drug repositioning for personalized medicine. <i>Genome Medicine</i> , 2012 , 4, 27	14.4	144
355	Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. <i>Genome Biology</i> , 2010 , 11, R82	18.3	144
354	The genetic basis and cell of origin of mixed phenotype acute leukaemia. <i>Nature</i> , 2018 , 562, 373-379	50.4	140
353	Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. <i>BMC Genomics</i> , 2006 , 7, 246	4.5	139
352	Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. <i>MBio</i> , 2011 , 2, e00342-10	7.8	137
351	Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. <i>Plant Journal</i> , 2015 , 83, 189-212	6.9	136
350	Identification and characterization of Hoxa9 binding sites in hematopoietic cells. <i>Blood</i> , 2012 , 119, 388-9	98.2	132
349	The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. <i>Developmental Biology</i> , 2007 , 302, 627-45	3.1	131

(2011-2003)

348	Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. <i>Molecular and Cellular Proteomics</i> , 2003 , 2, 346-56	7.6	130
347	Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. <i>Journal of Biological Chemistry</i> , 2012 , 287, 43137-55	5.4	127
346	Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. <i>Nucleic Acids Research</i> , 2008 , 36, 4549-64	20.1	127
345	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. <i>Acta Neuropathologica</i> , 2013 , 125, 373-84	14.3	126
344	The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. <i>Genes and Development</i> , 2007 , 21, 1653-74	12.6	125
343	LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads. <i>GigaScience</i> , 2015 , 4, 35	7.6	124
342	Nonmethylated transposable elements and methylated genes in a chordate genome. <i>Science</i> , 1999 , 283, 1164-7	33.3	122
341	A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. <i>Orphanet Journal of Rare Diseases</i> , 2014 , 9, 15	4.2	121
340	Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2008 , 17, 543-52	4	120
339	Gene number in an invertebrate chordate, Ciona intestinalis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 4437-40	11.5	120
338	De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. <i>Genome Biology</i> , 2009 , 10, R94	18.3	119
337	Diagnostic utility of galectin-3 in thyroid cancer. <i>American Journal of Pathology</i> , 2010 , 176, 2067-81	5.8	118
336	Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. <i>Epigenetics and Chromatin</i> , 2013 , 6, 15	5.8	107
335	ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. <i>Developmental Biology</i> , 2009 , 327, 551-65	3.1	106
334	Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. <i>Eukaryotic Cell</i> , 2003 , 2, 1336-49		105
333	Insights into conifer giga-genomes. <i>Plant Physiology</i> , 2014 , 166, 1724-32	6.6	104
332	Whole-genome profiling of mutagenesis in Caenorhabditis elegans. <i>Genetics</i> , 2010 , 185, 431-41	4	104
331	Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. <i>PLoS Genetics</i> , 2011 , 7, e1002301	6	104

330	A set of BAC clones spanning the human genome. <i>Nucleic Acids Research</i> , 2004 , 32, 3651-60	20.1	104
329	A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). <i>BMC Genomics</i> , 2008 , 9, 484	4.5	102
328	A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 18485-90	11.5	102
327	Recurrent targets of aberrant somatic hypermutation in lymphoma. <i>Oncotarget</i> , 2012 , 3, 1308-19	3.3	101
326	Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. <i>Genome Research</i> , 2002 , 12, 1159-67	9.7	101
325	Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. <i>Blood</i> , 2013 , 121, 3666-74	2.2	100
324	The completion of the Mammalian Gene Collection (MGC). Genome Research, 2009, 19, 2324-33	9.7	98
323	ORegAnno: an open access database and curation system for literature-derived promoters, transcription factor binding sites and regulatory variation. <i>Bioinformatics</i> , 2006 , 22, 637-40	7.2	97
322	SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. <i>Molecular Ecology Resources</i> , 2011 , 11 Suppl 1, 81-92	8.4	96
321	Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. Journal of Virological Methods, 2004 , 120, 87-96	2.6	92
320	Cross-cancer profiling of molecular alterations within the human autophagy interaction network. <i>Autophagy</i> , 2015 , 11, 1668-87	10.2	89
319	ORegAnno 3.0: a community-driven resource for curated regulatory annotation. <i>Nucleic Acids Research</i> , 2016 , 44, D126-32	20.1	89
318	Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. <i>Genome Research</i> , 2010 , 20, 1037-51	9.7	89
317	A physical map of the genome of Atlantic salmon, Salmo salar. <i>Genomics</i> , 2005 , 86, 396-404	4.3	89
316	Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. <i>BMC Genomics</i> , 2009 , 10, 213	4.5	88
315	A computational approach to finding novel targets for existing drugs. <i>PLoS Computational Biology</i> , 2011 , 7, e1002139	5	88
314	cisRED: a database system for genome-scale computational discovery of regulatory elements. <i>Nucleic Acids Research</i> , 2006 , 34, D68-73	20.1	88
313	Transferrin receptor 2 (TfR2) and HFE mutational analysis in non-C282Y iron overload: identification of a novel TfR2 mutation. <i>Blood</i> , 2002 , 100, 1075-7	2.2	86

312	Large-scale profiling of microRNAs for The Cancer Genome Atlas. <i>Nucleic Acids Research</i> , 2016 , 44, e3	20.1	85
311	GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. <i>American Journal of Human Genetics</i> , 2012 , 90, 1088-93	11	83
310	Homologous Recombination Deficiency and Platinum-Based Therapy Outcomes in Advanced Breast Cancer. <i>Clinical Cancer Research</i> , 2017 , 23, 7521-7530	12.9	82
309	Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. <i>Cancer Cell</i> , 2016 , 29, 394-406	24.3	81
308	Spatial heterogeneity in medulloblastoma. <i>Nature Genetics</i> , 2017 , 49, 780-788	36.3	80
307	Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. <i>Insect Biochemistry and Molecular Biology</i> , 2012 , 42, 525-36	4.5	79
306	Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. <i>Molecular Microbiology</i> , 2005 , 55, 1452-72	4.1	79
305	Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. <i>Nature Genetics</i> , 2014 , 46, 1245-9	36.3	78
304	Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10743-1074	8 ^{11.5}	78
303	Personalized oncogenomics 2010 , 11, I5		78
303	Personalized oncogenomics 2010 , 11, I5 Genomic analysis of a rare human tumor. <i>BMC Bioinformatics</i> , 2010 , 11,	3.6	78 78
		3.6 9.7	
302	Genomic analysis of a rare human tumor. <i>BMC Bioinformatics</i> , 2010 , 11, The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.		
302	Genomic analysis of a rare human tumor. <i>BMC Bioinformatics</i> , 2010 , 11, The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. <i>Genome Research</i> , 2010 , 20, 791-803 Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. <i>Genome</i>	9.7	78 77
302 301 300	Genomic analysis of a rare human tumor. <i>BMC Bioinformatics</i> , 2010 , 11, The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. <i>Genome Research</i> , 2010 , 20, 791-803 Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. <i>Genome Research</i> , 2002 , 12, 1386-400 Lessons learned from the application of whole-genome analysis to the treatment of patients with	9·7 9·7	78 77 76
302 301 300 299	Genomic analysis of a rare human tumor. <i>BMC Bioinformatics</i> , 2010 , 11, The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. <i>Genome Research</i> , 2010 , 20, 791-803 Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. <i>Genome Research</i> , 2002 , 12, 1386-400 Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. <i>Journal of Physical Education and Sports Management</i> , 2015 , 1, a000570 Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and	9·7 9·7 2.8	78 77 76 75
302 301 300 299 298	Genomic analysis of a rare human tumor. <i>BMC Bioinformatics</i> , 2010 , 11, The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. <i>Genome Research</i> , 2010 , 20, 791-803 Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. <i>Genome Research</i> , 2002 , 12, 1386-400 Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. <i>Journal of Physical Education and Sports Management</i> , 2015 , 1, a000570 Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. <i>Blood</i> , 2019 , 133, 1313-1324 Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis.	9·7 9·7 2.8	78 77 76 75

294	Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. <i>Archives of Surgery</i> , 2007 , 142, 717-27; discussion 727-9		72
293	Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. <i>PLoS ONE</i> , 2013 , 8, e7132	2 8 .7	72
292	Successful targeting of the NRG1 pathway indicates novel treatment strategy for metastatic cancer. <i>Annals of Oncology</i> , 2017 , 28, 3092-3097	10.3	64
291	Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. <i>Oncogene</i> , 2006 , 25, 7311-23	9.2	64
290	Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. <i>Nature Communications</i> , 2018 , 9, 4001	17.4	64
289	Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in Wild-Type Pancreatic Ductal Adenocarcinoma. <i>Clinical Cancer Research</i> , 2019 , 25, 4674-4681	12.9	63
288	A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. <i>Plant Journal</i> , 2007 , 50, 1063-78	6.9	63
287	A regulatory toolbox of MiniPromoters to drive selective expression in the brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16589-94	11.5	62
286	Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. <i>BMC Genomics</i> , 2009 , 10, 476	4.5	62
285	Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. <i>BMC Genomics</i> , 2008 , 9, 57	4.5	61
284	Altered Gene Expression along the Glycolysis-Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer. <i>Clinical Cancer Research</i> , 2020 , 26, 135-146	12.9	61
283	Functional characterization of a catabolic plasmid from polychlorinated- biphenyl-degrading Rhodococcus sp. strain RHA1. <i>Journal of Bacteriology</i> , 2004 , 186, 7783-95	3.5	60
282	Mapping segmental and sequence variations among laboratory mice using BAC array CGH. <i>Genome Research</i> , 2005 , 15, 302-11	9.7	60
281	Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. <i>Cell Reports</i> , 2014 , 9, 261-271	10.6	59
2 80	Slidermaximum use of probability information for alignment of short sequence reads and SNP detection. <i>Bioinformatics</i> , 2009 , 25, 6-13	7.2	59
279	Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling. <i>Genome Research</i> , 2006 , 16, 796-803	₃ 9·7	59
278	RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. <i>Journal of Cell Biology</i> , 2017 , 216, 3991-4005	7.3	58
277	A novel small-molecule inhibitor of the avian influenza H5N1 virus determined through computational screening against the neuraminidase. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 2667-72	8.3	57

(2010-2019)

276	CancerMine: a literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. <i>Nature Methods</i> , 2019 , 16, 505-507	21.6	54
275	Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. <i>PLoS Genetics</i> , 2018 , 14, e1007807	6	54
274	PICS: probabilistic inference for ChIP-seq. <i>Biometrics</i> , 2011 , 67, 151-63	1.8	53
273	BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data. <i>Bioinformatics</i> , 2012 , 28, 1923-4	7.2	52
272	Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. <i>Fungal Genetics and Biology</i> , 2006 , 43, 655-66	3.9	52
271	Assessment of SAGE in transcript identification. <i>Genome Research</i> , 2003 , 13, 1203-15	9.7	52
270	Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival In Xenografts and Associated with Glioblastoma Subtypes. <i>Stem Cell Reports</i> , 2015 , 5, 1-9	8	51
269	Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer. <i>Journal of Pathology</i> , 2012 , 227, 53-61	9.4	51
268	Interpretation of diagnostic laboratory tests for severe acute respiratory syndrome: the Toronto experience. <i>Cmaj</i> , 2004 , 170, 47-54	3.5	51
267	Systematic sequencing of cDNA clones using the transposon Tn5. <i>Nucleic Acids Research</i> , 2002 , 30, 246	9 <i>-7</i> 7.1	50
266	Identification of novel lung genes in bronchial epithelium by serial analysis of gene expression. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2006 , 35, 651-61	5.7	48
265	A novel mutation in EED associated with overgrowth. <i>Journal of Human Genetics</i> , 2015 , 60, 339-42	4.3	46
264	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. <i>Cell</i> , 2018 , 172, 1050-1062.	e ţ∳ .2	46
263	Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. <i>American Journal of Human Genetics</i> , 2010 , 87, 905-14	11	46
262	Epigenetic and transcriptional determinants of the human breast. <i>Nature Communications</i> , 2015 , 6, 635	5117.4	44
261	Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana). <i>BMC Plant Biology</i> , 2013 , 13, 80	5.3	44
260	The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. <i>BMC Cancer</i> , 2015 , 15, 984	4.8	44
259	High quality SNP calling using Illumina data at shallow coverage. <i>Bioinformatics</i> , 2010 , 26, 1029-35	7.2	44

258	A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE). <i>BMC Developmental Biology</i> , 2007 , 7, 92	3.1	44
257	Sequence biases in large scale gene expression profiling data. <i>Nucleic Acids Research</i> , 2006 , 34, e83	20.1	44
256	rAAV-compatible MiniPromoters for restricted expression in the brain and eye. <i>Molecular Brain</i> , 2016 , 9, 52	4.5	43
255	Complete genomic landscape of a recurring sporadic parathyroid carcinoma. <i>Journal of Pathology</i> , 2013 , 230, 249-60	9.4	43
254	ABySS-Explorer: visualizing genome sequence assemblies. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2009 , 15, 881-8	4	43
253	Generation of a wheat leaf rust, Puccinia triticina, EST database from stage-specific cDNA libraries. <i>Molecular Plant Pathology</i> , 2007 , 8, 451-67	5.7	43
252	Transcriptome analysis for Caenorhabditis elegans based on novel expressed sequence tags. <i>BMC Biology</i> , 2008 , 6, 30	7.3	43
251	Molecular phenotyping of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis. <i>Annals of Surgical Oncology</i> , 2008 , 15, 2811-26	3.1	43
250	Identification by full-coverage array CGH of human DNA copy number increases relative to chimpanzee and gorilla. <i>Genome Research</i> , 2006 , 16, 173-81	9.7	42
249	Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). <i>Oncotarget</i> , 2013 , 4, 329-45	3.3	42
248	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. <i>Nature Communications</i> , 2020 , 11, 4997	17.4	42
247	Integrated Genomic and Functional microRNA Analysis Identifies miR-30-5p as a Tumor Suppressor and Potential Therapeutic Nanomedicine in Head and Neck Cancer. <i>Clinical Cancer Research</i> , 2019 , 25, 2860-2873	12.9	41
246	Organellar Genomes of White Spruce (Picea glauca): Assembly and Annotation. <i>Genome Biology and Evolution</i> , 2015 , 8, 29-41	3.9	40
245	Identification and Analyses of Extra-Cranial and Cranial Rhabdoid Tumor Molecular Subgroups Reveal Tumors with Cytotoxic T Cell Infiltration. <i>Cell Reports</i> , 2019 , 29, 2338-2354.e7	10.6	40
244	Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. <i>Gene</i> , 2007 , 402, 40-50	3.8	40
243	Assessment and integration of publicly available SAGE, cDNA microarray, and oligonucleotide microarray expression data for global coexpression analyses. <i>Genomics</i> , 2005 , 86, 476-88	4.3	40
242	A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. <i>Nature Communications</i> , 2018 , 9, 461	17.4	39
241	A somatic reference standard for cancer genome sequencing. <i>Scientific Reports</i> , 2016 , 6, 24607	4.9	39

(2020-2015)

240	Loss of the Notch effector RBPJ promotes tumorigenesis. <i>Journal of Experimental Medicine</i> , 2015 , 212, 37-52	16.6	39
239	Poly-gene fusion transcripts and chromothripsis in prostate cancer. <i>Genes Chromosomes and Cancer</i> , 2012 , 51, 1144-53	5	39
238	Integrated and sequence-ordered BAC- and YAC-based physical maps for the rat genome. <i>Genome Research</i> , 2004 , 14, 766-79	9.7	39
237	miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer. <i>Oncotarget</i> , 2016 , 7, 25930-48	3.3	39
236	Identification and analysis of murine pancreatic islet enhancers. <i>Diabetologia</i> , 2013 , 56, 542-52	10.3	38
235	Cell cycle regulators show diagnostic and prognostic utility for differentiated thyroid cancer. <i>Annals of Surgical Oncology</i> , 2007 , 14, 3403-11	3.1	38
234	DiscoverySpace: an interactive data analysis application. <i>Genome Biology</i> , 2007 , 8, R6	18.3	38
233	SOX9 modulates the expression of key transcription factors required for heart valve development. <i>Development (Cambridge)</i> , 2015 , 142, 4340-50	6.6	37
232	VisRseq: R-based visual framework for analysis of sequencing data. <i>BMC Bioinformatics</i> , 2015 , 16 Suppl 11, S2	3.6	37
231	JAGuaR: junction alignments to genome for RNA-seq reads. <i>PLoS ONE</i> , 2014 , 9, e102398	3.7	37
230	Detection and management of hypothyroidism following thyroid lobectomy: evaluation of a clinical algorithm. <i>Annals of Surgical Oncology</i> , 2011 , 18, 2548-54	3.1	37
229	Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. <i>PLoS ONE</i> , 2010 , 5, e12661	3.7	37
228	Generation and annotation of lodgepole pine and oleoresin-induced expressed sequences from the blue-stain fungus Ophiostoma clavigerum, a Mountain Pine Beetle-associated pathogen. <i>FEMS Microbiology Letters</i> , 2007 , 267, 151-8	2.9	37
227	System-level analysis of neuroblastoma tumor-initiating cells implicates AURKB as a novel drug target for neuroblastoma. <i>Clinical Cancer Research</i> , 2010 , 16, 4572-82	12.9	36
226	Identification and analysis of internal promoters in Caenorhabditis elegans operons. <i>Genome Research</i> , 2007 , 17, 1478-85	9.7	36
225	Biomarker panel diagnosis of thyroid cancer: a critical review. <i>Expert Review of Anticancer Therapy</i> , 2008 , 8, 1399-413	3.5	35
224	Tigmint: correcting assembly errors using linked reads from large molecules. <i>BMC Bioinformatics</i> , 2018 , 19, 393	3.6	35
223	Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes <i>Nature Cancer</i> , 2020 , 1, 452-468	15.4	34

222	Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. <i>BMC Plant Biology</i> , 2014 , 14, 95	5.3	34
221	Identification of a putative Tdp1 inhibitor (CD00509) by in vitro and cell-based assays. <i>Journal of Biomolecular Screening</i> , 2014 , 19, 1372-82		34
220	Prediction of genomic functional elements. <i>Annual Review of Genomics and Human Genetics</i> , 2006 , 7, 315-38	9.7	34
219	Physical maps for genome analysis of serotype A and D strains of the fungal pathogen Cryptococcus neoformans. <i>Genome Research</i> , 2002 , 12, 1445-53	9.7	34
218	Targeted CNS Delivery Using Human MiniPromoters and Demonstrated Compatibility with Adeno-Associated Viral Vectors. <i>Molecular Therapy - Methods and Clinical Development</i> , 2014 , 1, 5	6.4	33
217	Sources of erroneous sequences and artifact chimeric reads in next generation sequencing of genomic DNA from formalin-fixed paraffin-embedded samples. <i>Nucleic Acids Research</i> , 2019 , 47, e12	20.1	33
216	Pyruvate Kinase Inhibits Proliferation during Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation. <i>Cancer Research</i> , 2017 , 77, 3217-3230	10.1	32
215	Characterization of the let-653 gene in Caenorhabditis elegans. <i>Molecular Genetics and Genomics</i> , 1995 , 248, 719-26		32
214	A comparison of parallel pyrosequencing and sanger clone-based sequencing and its impact on the characterization of the genetic diversity of HIV-1. <i>PLoS ONE</i> , 2011 , 6, e26745	3.7	32
213	Personalized oncogenomics: clinical experience with malignant peritoneal mesothelioma using whole genome sequencing. <i>PLoS ONE</i> , 2015 , 10, e0119689	3.7	32
212	Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees. <i>BMC Genomics</i> , 2011 , 12, 450	4.5	31
211	Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. <i>Journal of Endocrinology</i> , 2009 , 201, 1-13	4.7	31
210	Large-scale production of SAGE libraries from microdissected tissues, flow-sorted cells, and cell lines. <i>Genome Research</i> , 2007 , 17, 108-16	9.7	31
209	Determinants of Tc-99m sestamibi SPECT scan sensitivity in primary hyperparathyroidism. <i>American Journal of Surgery</i> , 2010 , 199, 614-20	2.7	30
208	Identification of transcripts with enriched expression in the developing and adult pancreas. <i>Genome Biology</i> , 2008 , 9, R99	18.3	30
207	ntEdit: scalable genome sequence polishing. <i>Bioinformatics</i> , 2019 , 35, 4430-4432	7.2	29
206	Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. <i>Endocrine-Related Cancer</i> , 2017 , 24, 53-69	5.7	29
205	Text-mining assisted regulatory annotation. <i>Genome Biology</i> , 2008 , 9, R31	18.3	29

(2021-2015)

Retrospective review using targeted deep sequencing reveals mutational differences between gastroesophageal junction and gastric carcinomas. <i>BMC Cancer</i> , 2015 , 15, 32	4.8	28
The Genome of the Beluga Whale (Delphinapterus leucas). <i>Genes</i> , 2017 , 8,	4.2	28
Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. <i>Genome Biology</i> , 2012 , 13, r31	18.3	28
A clinically validated diagnostic second-generation sequencing assay for detection of hereditary BRCA1 and BRCA2 mutations. <i>Journal of Molecular Diagnostics</i> , 2013 , 15, 796-809	5.1	27
Software for automated analysis of DNA fingerprinting gels. <i>Genome Research</i> , 2003 , 13, 940-53	9.7	27
Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X GenomicsPGemCode Sequencing Data. <i>PLoS ONE</i> , 2016 , 11, e0163059	3.7	27
Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer. <i>Annals of Oncology</i> , 2016 , 27, 801-6	10.3	27
Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect. <i>Canadian Journal of Cardiology</i> , 2014 , 30, 181-7	3.8	26
Spark: a navigational paradigm for genomic data exploration. <i>Genome Research</i> , 2012 , 22, 2262-9	9.7	26
akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. <i>Molecular Biology of the Cell</i> , 2013 , 24, 1053-67	3.5	26
Using next-generation sequencing for the diagnosis of rare disorders: a family with retinitis pigmentosa and skeletal abnormalities. <i>Journal of Pathology</i> , 2011 , 225, 12-8	9.4	26
An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. <i>Nucleic Acids Research</i> , 2002 , 30, 2460-8	20.1	26
Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. <i>Oncotarget</i> , 2016 , 7, 59360-59376	3.3	26
Application of a Neural Network Whole Transcriptome-Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers. <i>JAMA Network Open</i> , 2019 , 2, e192597	10.4	25
Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. <i>Developmental Cell</i> , 2018 , 44, 709-724.e6	10.2	25
Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. <i>BMC Research Notes</i> , 2011 , 4, 34	2.3	25
Genes that may modulate longevity in C. elegans in both dauer larvae and long-lived daf-2 adults. <i>Experimental Gerontology</i> , 2007 , 42, 825-39	4.5	25
Rare loss-of-function variants in type I IFN immunity genes are not associated with severe COVID-19. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	25
	The Genome of the Beluga Whale (Delphinapterus leucas). <i>Genes</i> , 2017, 8, Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. <i>Genome Biology</i> , 2012, 13, r31 A clinically validated diagnostic second-generation sequencing assay for detection of hereditary BRCA1 and BRCA2 mutations. <i>Journal of Molecular Diagnostics</i> , 2013, 15, 796-809 Software for automated analysis of DNA fingerprinting gels. <i>Genome Research</i> , 2003, 13, 940-53 Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X GenomicsRGemCode Sequencing Data. <i>PLoS ONE</i> , 2016, 11, e0163059 Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer. <i>Annals of Oncology</i> , 2016, 27, 801-6 Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect. <i>Canadian Journal of Cardiology</i> , 2014, 30, 181-7 Spark: a navigational paradigm for genomic data exploration. <i>Genome Research</i> , 2012, 22, 2262-9 akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. <i>Molecular Biology of the Cell</i> , 2013, 24, 1053-67 Using next-generation sequencing for the diagnosis of rare disorders: a family with retinitis pigmentosa and skeletal abnormalities. <i>Journal of Pathology</i> , 2011, 225, 12-8 An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. <i>Nucleic Acids Research</i> , 2002, 30, 2460-8 Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. <i>Oncotarget</i> , 2016, 7, 59360-59376 Application of a Neural Network Whole Transcriptome-Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers. <i>JAMA Network Open</i> , 2019, 2, e192597 Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. <i>Developmental Cell</i> , 2018, 44, 709-724,e6 Gene expression profiling of oxidative stress respon	The Genome of the Beluga Whale (Delphinapterus leucas). <i>Genes</i> , 2017, 8, Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. <i>Genome Biology</i> , 2012, 13, 731 A clinically validated diagnostic second-generation sequencing assay for detection of hereditary BRCA1 and BRCA2 mutations. <i>Journal of Molecular Diagnostics</i> , 2013, 15, 796-809 5-1 Software for automated analysis of DNA fingerprinting gels. <i>Genome Research</i> , 2003, 13, 940-53 97 Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X GenomicsPGemCode Sequencing Data. <i>PLoS ONE</i> , 2016, 11, e0163059 Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer. <i>Annals of Oncology</i> , 2016, 27, 801-6 Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect. <i>Canadian Journal of Cardiology</i> , 2014, 30, 181-7 Spark: a navigational paradigm for genomic data exploration. <i>Genome Research</i> , 2012, 22, 2262-9 97 akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. <i>Molecular Biology of the Cell</i> , 2013, 24, 1053-67 Using next-generation sequencing for the diagnosis of rare disorders: a family with retinitis pigmentosa and skeletal abnormalities. <i>Journal of Pathology</i> , 2011, 225, 12-8 An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. <i>Nucleic Acids Research</i> , 2002, 30, 2460-8 Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. <i>Oncotarget</i> , 2016, 7, 59360-59376 33 Application of a Neural Network Whole Transcriptome-Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers. <i>JAMA Network Open</i> , 2019, 2, e192597 Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. <i>Developmental Cell</i> , 2018, 44, 709-724.e6 Gene expression profiling of oxidat

186	Coordinated expression of galectin-3 and caveolin-1 in thyroid cancer. <i>Journal of Pathology</i> , 2012 , 228, 56-66	9.4	24
185	Physical map-assisted whole-genome shotgun sequence assemblies. <i>Genome Research</i> , 2006 , 16, 768-75	5 9.7	24
184	Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour. <i>Open Biology</i> , 2016 , 6,	7	24
183	Investigation of PD-L1 Biomarker Testing Methods for PD-1 Axis Inhibition in Non-squamous Non-small Cell Lung Cancer. <i>Journal of Histochemistry and Cytochemistry</i> , 2016 , 64, 587-600	3.4	24
182	Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 19098-19108	11.5	23
181	Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera. <i>BMC Genomics</i> , 2010 , 11, 536	4.5	23
180	Identification of a set of genes showing regionally enriched expression in the mouse brain. <i>BMC Neuroscience</i> , 2008 , 9, 66	3.2	23
179	Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis. <i>Eukaryotic Cell</i> , 2005 , 4, 2029-43		23
178	ChAsE: chromatin analysis and exploration tool. <i>Bioinformatics</i> , 2016 , 32, 3324-3326	7.2	23
177	Tumor necrosis factor overcomes immune evasion in p53-mutant medulloblastoma. <i>Nature Neuroscience</i> , 2020 , 23, 842-853	25.5	22
176	A survey of genomic properties for the detection of regulatory polymorphisms. <i>PLoS Computational Biology</i> , 2007 , 3, e106	5	22
175	Sockeye: a 3D environment for comparative genomics. <i>Genome Research</i> , 2004 , 14, 956-62	9.7	22
174	Systematic recovery and analysis of full-ORF human cDNA clones. <i>Genome Research</i> , 2004 , 14, 2083-92	9.7	22
173	CGMIM: automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes. <i>BMC Bioinformatics</i> , 2005 , 6, 78	3.6	22
172	GA4GH: International policies and standards for data sharing across genomic research and healthcare <i>Cell Genomics</i> , 2021 , 1, 100029-100029		20
171	Genome sequences of six species threatening forest ecosystems. <i>Genomics Data</i> , 2016 , 10, 85-88		20
170	Molecular characterization of metastatic pancreatic neuroendocrine tumors (PNETs) using whole-genome and transcriptome sequencing. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	20
169	ALEXA: a microarray design platform for alternative expression analysis. <i>Nature Methods</i> , 2008 , 5, 118	21.6	19

168	Discovering significant OPSM subspace clusters in massive gene expression data 2006,		19
167	Internet Contig Explorer (iCE)a tool for visualizing clone fingerprint maps. <i>Genome Research</i> , 2003 , 13, 1244-9	9.7	19
166	Text-mining clinically relevant cancer biomarkers for curation into the CIViC database. <i>Genome Medicine</i> , 2019 , 11, 78	14.4	19
165	Genome and Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. <i>Clinical Cancer Research</i> , 2021 , 27, 202-212	12.9	19
164	LongSAGE profiling of nine human embryonic stem cell lines. <i>Genome Biology</i> , 2007 , 8, R113	18.3	18
163	Base excision repair deficiency signatures implicate germline and somatic aberrations in pancreatic ductal adenocarcinoma and breast cancer oncogenesis. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	17
162	A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion. <i>Developmental Dynamics</i> , 2014 , 243, 894-905	2.9	17
161	MEN1 mutations in Hithle cell (oncocytic) thyroid carcinoma. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2015 , 100, E611-5	5.6	17
160	ALEA: a toolbox for allele-specific epigenomics analysis. <i>Bioinformatics</i> , 2014 , 30, 1172-1174	7.2	17
159	Diagnostic value of next-generation sequencing in an unusual sphenoid tumor. <i>Oncologist</i> , 2014 , 19, 623-30	5.7	17
158	Beta-catenin expression is prognostic of improved non-small cell lung cancer survival. <i>American Journal of Surgery</i> , 2012 , 203, 654-659	2.7	17
157	Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade-specific epigenome and transcriptome landscapes. <i>Nature Genetics</i> , 2020 , 52, 800-810	36.3	17
156	Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae. <i>Genetics</i> , 2014 , 196, 403-12	4	16
155	Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b and mir20a in repressing transforming growth factor-beta signaling. <i>Hepatology</i> , 2013 , 57, 249	1 ¹ -501	16
154	Caenorhabditis elegans cisRED: a catalogue of conserved genomic elements. <i>Nucleic Acids Research</i> , 2009 , 37, 1323-34	20.1	16
153	On the Deep Order-Preserving Submatrix Problem: A Best Effort Approach. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2012 , 24, 309-325	4.2	16
152	Clinical utility of type 1 growth factor receptor expression in colon cancer. <i>American Journal of Surgery</i> , 2008 , 195, 604-10	2.7	16
151	Improved structural variant interpretation for hereditary cancer susceptibility using long-read sequencing. <i>Genetics in Medicine</i> , 2020 , 22, 1892-1897	8.1	15

150	The Genome of the Northern Sea Otter (Enhydra lutris kenyoni). Genes, 2017, 8,	4.2	15
149	Evaluation of type 1 growth factor receptor family expression in benign and malignant thyroid lesions. <i>American Journal of Surgery</i> , 2008 , 195, 667-73; discussion 673	2.7	15
148	AcePrimer: automation of PCR primer design based on gene structure. <i>Bioinformatics</i> , 2002 , 18, 1538-9	7.2	15
147	Genome-Enhanced Detection and Identification (GEDI) of plant pathogens. <i>PeerJ</i> , 2018 , 6, e4392	3.1	15
146	Mutations in ILK, encoding integrin-linked kinase, are associated with arrhythmogenic cardiomyopathy. <i>Translational Research</i> , 2019 , 208, 15-29	11	14
145	Personalized oncogenomic analysis of metastatic adenoid cystic carcinoma: using whole-genome sequencing to inform clinical decision-making. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	14
144	A collaborative filtering-based approach to biomedical knowledge discovery. <i>Bioinformatics</i> , 2018 , 34, 652-659	7.2	14
143	Whole-Genome Sequencing in Cancer. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2019 , 9,	5.4	14
142	Ab initio parameterization of YFF1, a universal force field for drug-design applications. <i>Journal of Molecular Modeling</i> , 2012 , 18, 663-73	2	14
141	Integrative genomic analysis of ghost cell odontogenic carcinoma. <i>Oral Oncology</i> , 2015 , 51, e71-5	4.4	14
140	A methodology for analyzing SAGE libraries for cancer profiling. <i>ACM Transactions on Information Systems</i> , 2005 , 23, 35-60	4.8	14
139	Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2663-2668	11.5	13
138	Improved measures for evolutionary conservation that exploit taxonomy distances. <i>Nature Communications</i> , 2019 , 10, 1556	17.4	13
137	Complete Mitochondrial Genome of a Gymnosperm, Sitka Spruce (Picea sitchensis), Indicates a Complex Physical Structure. <i>Genome Biology and Evolution</i> , 2020 , 12, 1174-1179	3.9	13
136	LIST-S2: taxonomy based sorting of deleterious missense mutations across species. <i>Nucleic Acids Research</i> , 2020 , 48, W154-W161	20.1	13
135	Application of genomics to identify therapeutic targets in recurrent pediatric papillary thyroid carcinoma. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	13
134	MAVIS: merging, annotation, validation, and illustration of structural variants. <i>Bioinformatics</i> , 2019 , 35, 515-517	7.2	13
133	The expression level of small non-coding RNAs derived from the first exon of protein-coding genes is predictive of cancer status. <i>EMBO Reports</i> , 2014 , 15, 402-10	6.5	13

132	Immunophenotyping of thyroid tumors identifies molecular markers altered during transformation of differentiated into anaplastic carcinoma. <i>American Journal of Surgery</i> , 2011 , 201, 580-6	2.7	13	
131	Automated high throughput nucleic acid purification from formalin-fixed paraffin-embedded tissue samples for next generation sequence analysis. <i>PLoS ONE</i> , 2017 , 12, e0178706	3.7	13	
130	The Genome of the North American Brown Bear or Grizzly: Ursus arctos ssp. horribilis. <i>Genes</i> , 2018 , 9,	4.2	13	
129	Somatic mosaicism for the p.His1047Arg mutation in PIK3CA in a girl with mesenteric lipomatosis. <i>American Journal of Medical Genetics, Part A</i> , 2014 , 164A, 2360-4	2.5	12	
128	A new frontier in personalized cancer therapy: mapping molecular changes. <i>Future Oncology</i> , 2011 , 7, 873-94	3.6	12	
127	Hemithyroidectomy is the preferred initial operative approach for an indeterminate fine needle aspiration biopsy diagnosis. <i>Canadian Journal of Surgery</i> , 2012 , 55, 191-8	2	12	
126	ProductivePcharges on atoms in proteins: comparative docking with the extended steroid benchmark set and discovery of a novel SHBG ligand. <i>Journal of Chemical Information and Modeling</i> , 2005 , 45, 1842-53	6.1	12	
125	Modeling network growth with assortative mixing. European Physical Journal B, 2006, 50, 617-630	1.2	12	
124	Whole genome and whole transcriptome genomic profiling of a metastatic eccrine porocarcinoma. <i>Npj Precision Oncology</i> , 2018 , 2, 8	9.8	11	
123	Putative BRAF activating fusion in a medullary thyroid cancer. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a000729	2.8	11	
122	A pan-cancer analysis of alternative splicing events reveals novel tumor-associated splice variants of matriptase. <i>Cancer Informatics</i> , 2014 , 13, 167-77	2.4	11	
121	HoxA13 Regulates Phenotype Regionalization of Human Pregnant Myometrium. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2015 , 100, E1512-22	5.6	11	
120	LaneRuler: Automated Lane Tracking for DNA Electrophoresis Gel Images. <i>IEEE Transactions on Automation Science and Engineering</i> , 2010 , 7, 706-708	4.9	11	
119	Human variation database: an open-source database template for genomic discovery. <i>Bioinformatics</i> , 2011 , 27, 1155-6	7.2	11	
118	Predictive utility of cyclo-oxygenase-2 expression by colon and rectal cancer. <i>American Journal of Surgery</i> , 2014 , 207, 712-6	2.7	10	
117	Papillary thyroid carcinoma: prognostic significance of cancer presentation. <i>American Journal of Surgery</i> , 2015 , 210, 298-301	2.7	10	
116	Allelic ratios and the mutational landscape reveal biologically significant heterozygous SNVs. <i>Genetics</i> , 2012 , 190, 1225-33	4	10	
115	A BAC clone fingerprinting approach to the detection of human genome rearrangements. <i>Genome Biology</i> , 2007 , 8, R224	18.3	10	

114	Preferential network perturbation. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 823-	84903	10
113	A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid leukemia. <i>Nature Communications</i> , 2021 , 12, 2474	17.4	10
112	Whole-genome and transcriptome profiling of a metastatic thyroid-like follicular renal cell carcinoma. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	10
111	Molecular characterization of -amplified colorectal cancer identifies potential mechanisms of resistance to targeted therapies: a report of two instructive cases. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	9
110	An Interactive Analysis and Exploration Tool for Epigenomic Data. <i>Computer Graphics Forum</i> , 2013 , 32, 91-100	2.4	9
109	Comprehensive whole genome sequence analyses yields novel genetic and structural insights for Intellectual Disability. <i>BMC Genomics</i> , 2017 , 18, 403	4.5	9
108	Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern. <i>BMC Genomics</i> , 2010 , 11, 131	4.5	9
107	Effect of TERT and ATM on gene expression profiles in human fibroblasts. <i>Genes Chromosomes and Cancer</i> , 2004 , 39, 298-310	5	9
106	Megabase-scale methylation phasing using nanopore long reads and NanoMethPhase. <i>Genome Biology</i> , 2021 , 22, 68	18.3	9
105	Genomic characterization of a well-differentiated grade 3 pancreatic neuroendocrine tumor. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	8
104	Detection and genomic characterization of a mammary-like adenocarcinoma. <i>Journal of Physical Education and Sports Management</i> , 2017 , 3,	2.8	8
103	Twist1 transcriptional targets in the developing atrio-ventricular canal of the mouse. <i>PLoS ONE</i> , 2012 , 7, e40815	3.7	8
102	A modified polymerase chain reaction-long serial analysis of gene expression protocol identifies novel transcripts in human CD34+ bone marrow cells. <i>Stem Cells</i> , 2007 , 25, 1681-9	5.8	8
101	An update and lessons from whole-genome sequencing projects. <i>Current Opinion in Genetics and Development</i> , 1995 , 5, 349-53	4.9	8
100	Rare SUZ12 variants commonly cause an overgrowth phenotype. <i>American Journal of Medical Genetics, Part C: Seminars in Medical Genetics</i> , 2019 , 181, 532-547	3.1	8
99	Subtype-Discordant Pancreatic Ductal Adenocarcinoma Tumors Show Intermediate Clinical and Molecular Characteristics. <i>Clinical Cancer Research</i> , 2021 , 27, 150-157	12.9	8
98	RTNsurvival: an R/Bioconductor package for regulatory network survival analysis. <i>Bioinformatics</i> , 2019 , 35, 4488-4489	7.2	7
97	Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development. <i>BMC Genomics</i> , 2015 , 16, 545	4.5	7

(2007-2017)

96	Compound heterozygous TRPV4 mutations in two siblings with a complex phenotype including severe intellectual disability and neuropathy. <i>American Journal of Medical Genetics, Part A</i> , 2017 , 173, 3087-3092	2.5	7
95	Incremental value and clinical impact of neck sonography for primary hyperparathyroidism: a risk-adjusted analysis. <i>Canadian Journal of Surgery</i> , 2013 , 56, 325-31	2	7
94	Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics. <i>BMC Bioinformatics</i> , 2004 , 5, 101	3.6	7
93	Management and visualization of whole genome shotgun assemblies using SAM. <i>BioTechniques</i> , 2005 , 38, 715-6, 718, 720	2.5	7
92	Tumor microRNA profile and prognostic value for lymph node metastasis in oral squamous cell carcinoma patients. <i>Oncotarget</i> , 2020 , 11, 2204-2215	3.3	7
91	The transcriptional landscape of Shh medulloblastoma. <i>Nature Communications</i> , 2021 , 12, 1749	17.4	7
90	Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. <i>Developmental Cell</i> , 2021 , 56, 1238-1252.e5	10.2	7
89	Genomic profiling of pelvic genital type leiomyosarcoma in a woman with a germline:c.1100delC mutation and a concomitant diagnosis of metastatic invasive ductal breast carcinoma. <i>Journal of Physical Education and Sports Management</i> , 2017 , 3,	2.8	6
88	Sequencing, Assembly, and Annotation of Four Threespine Stickleback Genomes Based on Microfluidic Partitioned DNA Libraries. <i>Genes</i> , 2019 , 10,	4.2	6
87	ORCA: a comprehensive bioinformatics container environment for education and research. <i>Bioinformatics</i> , 2019 , 35, 4448-4450	7.2	6
86	Prognostic significance of autocrine motility factor receptor expression by colorectal cancer and lymph node metastases. <i>American Journal of Surgery</i> , 2015 , 209, 884-9; discussion 889	2.7	6
85	Evaluation of protocols for rRNA depletion-based RNA sequencing of nanogram inputs of mammalian total RNA. <i>PLoS ONE</i> , 2019 , 14, e0224578	3.7	6
84	Characterization of the human thyroid epigenome. <i>Journal of Endocrinology</i> , 2017 , 235, 153-165	4.7	6
83	Increasing quality, throughput and speed of sample preparation for strand-specific messenger RNA sequencing. <i>BMC Genomics</i> , 2017 , 18, 515	4.5	6
82	KiWi: A Scalable Subspace Clustering Algorithm for Gene Expression Analysis 2009,		6
81	Systematic analysis of host immunological pressure on the envelope gene of human immunodeficiency virus type 1 by an immunobioinformatics approach. <i>Current HIV Research</i> , 2008 , 6, 370-9	1.3	6
80	Discovery of novel alternatively spliced C. elegans transcripts by computational analysis of SAGE data. <i>BMC Genomics</i> , 2007 , 8, 447	4.5	6
79	THOR: targeted high-throughput ortholog reconstructor. <i>Bioinformatics</i> , 2007 , 23, 2622-4	7.2	6

78	Mutations In MLL2 and MEF2B Genes In Follicular Lymphoma and Diffuse Large B-Cell Lymphoma. <i>Blood</i> , 2010 , 116, 473-473	2.2	6
77	Largest Complete Mitochondrial Genome of a Gymnosperm, Sitka Spruce (Picea sitchensis), Indicates Complex Physical Structure		6
76	Personalized oncogenomics in the management of gastrointestinal carcinomas-early experiences from a pilot study. <i>Current Oncology</i> , 2016 , 23, e571-e575	2.8	6
75	Comparative RNA-Sequencing Analysis Benefits a Pediatric Patient With Relapsed Cancer. <i>JCO Precision Oncology</i> , 2018 , 2,	3.6	6
74	Therapeutic Implication of Genomic Landscape of Adult Metastatic Sarcoma <i>JCO Precision Oncology</i> , 2019 , 3, 1-25	3.6	5
73	Perturbation of Interaction Networks for Application to Cancer Therapy. <i>Cancer Informatics</i> , 2007 , 5, 117693510700500	2.4	5
72	Structural characterization of genomes by large scale sequence-structure threading. <i>BMC Bioinformatics</i> , 2004 , 5, 37	3.6	5
71	Serial analysis of gene expression profiles of developmental stages in non-small cell lung carcinoma. <i>Chest</i> , 2004 , 125, 97S	5.3	5
70	Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis. <i>Journal of Inherited Metabolic Disease</i> , 2018 , 41, 555-5	62 ⁴	4
69	The pivotal role of sampling recurrent tumors in the precision care of patients with tumors of the central nervous system. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	4
68	Genetic counseling in direct-to-consumer exome sequencing: a case report. <i>Journal of Genetic Counseling</i> , 2014 , 23, 742-53	2.5	4
67	Clinical importance of bilateral disease in patients with papillary thyroid cancer. <i>Canadian Journal of Surgery</i> , 2016 , 59, 213-5	2	4
66	Using LongSAGE to Detect Biomarkers of Cervical Cancer Potentially Amenable to Optical Contrast Agent Labelling. <i>Biomarker Insights</i> , 2007 , 2, 447-61	3.5	4
65	Genomic Analysis of a Serotype 5 Streptococcus pneumoniae Outbreak in British Columbia, Canada, 2005-2009. <i>Canadian Journal of Infectious Diseases and Medical Microbiology</i> , 2016 , 2016, 5381871	2.6	4
64	-associated neurodevelopmental disorder. <i>Journal of Medical Genetics</i> , 2021 , 58, 196-204	5.8	4
63	Uncovering Clinically Relevant Gene Fusions with Integrated Genomic and Transcriptomic Profiling of Metastatic Cancers. <i>Clinical Cancer Research</i> , 2021 , 27, 522-531	12.9	4
62	Delving into Early-onset Pancreatic Ductal Adenocarcinoma: How Does Age Fit In?. <i>Clinical Cancer Research</i> , 2021 , 27, 246-254	12.9	4
61	Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations. <i>Journal of Computer-Aided Molecular Design</i> , 2018 , 32, 299-311	4.2	4

(2021-2017)

60	Management of PET diagnosed thyroid incidentalomas in British Columbia Canada: Critical importance of the PET report. <i>American Journal of Surgery</i> , 2017 , 213, 950-957	2.7	3	
59	Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. <i>Molecular Cancer Therapeutics</i> , 2020 , 19, 1889-1897	6.1	3	
58	Fluorouracil sensitivity in a head and neck squamous cell carcinoma with a somatic structural variant. <i>Journal of Physical Education and Sports Management</i> , 2020 , 6,	2.8	3	
57	The Genome of the Steller Sea Lion (). <i>Genes</i> , 2019 , 10,	4.2	3	
56	Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice. <i>BMC Biology</i> , 2013 , 11, 106	7.3	3	
55	Theoretical Investigation of the D83V Mutation within the Myocyte-Specific Enhancer Factor-2 Beta and Its Role in Cancer. <i>Journal of Theoretical Chemistry</i> , 2013 , 2013, 1-10		3	
54	Conserved elements associated with ribosomal genes and their trans-splice acceptor sites in Caenorhabditis elegans. <i>Nucleic Acids Research</i> , 2010 , 38, 2990-3004	20.1	3	
53	QUASI analysis of host immune responses to Gag polyproteins of human immunodeficiency virus type 1 by a systematic bioinformatics approach. <i>Biochemistry and Cell Biology</i> , 2010 , 88, 671-81	3.6	3	
52	Novel expressed sequences identified in a model of androgen independent prostate cancer. <i>BMC Genomics</i> , 2007 , 8, 32	4.5	3	
51	An approach to large scale identification of non-obvious structural similarities between proteins. <i>BMC Bioinformatics</i> , 2004 , 5, 61	3.6	3	
50	Optimization of magnetic bead-based nucleic acid extraction for SARS-CoV-2 testing using readily available reagents. <i>Journal of Virological Methods</i> , 2022 , 299, 114339	2.6	3	
49	Proteotranscriptomic classification and characterization of pancreatic neuroendocrine neoplasms. <i>Cell Reports</i> , 2021 , 37, 109817	10.6	3	
48	Clinical and cost outcomes following genomics-informed treatment for advanced cancers. <i>Cancer Medicine</i> , 2021 , 10, 5131-5140	4.8	3	
47	Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings. <i>Genes</i> , 2021 , 12,	4.2	3	
46	Matching methods in precision oncology: An introduction and illustrative example. <i>Molecular Genetics & Molecular </i>	2.3	3	
45	Co-expression patterns of chimeric antigen receptor (CAR)-T cell target antigens in primary and recurrent ovarian cancer. <i>Gynecologic Oncology</i> , 2021 , 160, 520-529	4.9	3	
44	Tumor infiltrating neutrophils and gland formation predict overall survival and molecular subgroups in pancreatic ductal adenocarcinoma. <i>Cancer Medicine</i> , 2021 , 10, 1155-1165	4.8	3	
43	The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle <i>PLoS ONE</i> , 2021 , 16, e0255752	3.7	3	

42	Complete Chloroplast Genome Sequence of a White Spruce (Picea glauca, Genotype WS77111) from Eastern Canada. <i>Microbiology Resource Announcements</i> , 2019 , 8,	1.3	2
41	Complete Chloroplast Genome Sequence of an Engelmann Spruce (, Genotype Se404-851) from Western Canada. <i>Microbiology Resource Announcements</i> , 2019 , 8,	1.3	2
40	RTNduals: an R/Bioconductor package for analysis of co-regulation and inference of dual regulons. <i>Bioinformatics</i> , 2019 , 35, 5357-5358	7.2	2
39	Complete Genome Sequence of SJ42, a Nonoutbreak Strain from an Immunocompromised Patient with Pulmonary Disease. <i>Genome Announcements</i> , 2017 , 5,		2
38	Selective targeting of indel-inferred differences in spatial structures of homologous proteins. <i>Journal of Bioinformatics and Computational Biology</i> , 2006 , 4, 403-14	1	2
37	An application of peer-to-peer technology to the discovery, use and assessment of bioinformatics programs. <i>Nature Methods</i> , 2005 , 2, 563	21.6	2
36	Genome organization and structural aspects of the SARS-related virus 2005 , 101-128		2
35	Clinical response to nivolumab in an INI1-deficient pediatric chordoma correlates with immunogenic recognition of brachyury <i>Npj Precision Oncology</i> , 2021 , 5, 103	9.8	2
34	Annotating the regulatory genome. <i>Methods in Molecular Biology</i> , 2010 , 674, 313-49	1.4	2
33	A Distributed Whole Genome Sequencing Benchmark Study. Frontiers in Genetics, 2020 , 11, 612515	4.5	2
32	Deep-learning based classification distinguishes sarcomatoid malignant mesotheliomas from benign spindle cell mesothelial proliferations. <i>Modern Pathology</i> , 2021 , 34, 2028-2035	9.8	2
31	Clinical outcomes after whole-genome sequencing in patients with metastatic non-small-cell lung cancer. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	2
30	NTRK2 Fusion driven pediatric glioblastoma: Identification of oncogenic Drivers via integrative Genome and transcriptome profiling. <i>Clinical Case Reports (discontinued)</i> , 2021 , 9, 1472-1477	0.7	2
29	NHJ-1 Is Required for Canonical Nonhomologous End Joining in. <i>Genetics</i> , 2020 , 215, 635-651	4	1
28	Integration of Whole-Genome Sequencing With Circulating Tumor DNA Analysis Captures Clonal Evolution and Tumor Heterogeneity in Non-V600 BRAF Mutant Colorectal Cancer. <i>Clinical Colorectal Cancer</i> , 2020 , 19, 132-136.e3	3.8	1
27	Identifying cancer mutation targets across thousands of samples: MuteProc, a high throughput mutation analysis pipeline. <i>BMC Bioinformatics</i> , 2013 , 14, 167	3.6	1
26	ChIP-Seq: Mapping of Protein D NA Interactions201-215		1
25	An interactive tool for visualization of relationships between gene expression profiles. <i>BMC Bioinformatics</i> , 2006 , 7, 193	3.6	1

24	A knowledge discovery object model API for Java. <i>BMC Bioinformatics</i> , 2003 , 4, 51	3.6	1
23	A platform for oncogenomic reporting and interpretation <i>Nature Communications</i> , 2022 , 13, 756	17.4	1
22	Identification of Genes Frequently Mutated In FL and DLBCL with Transcriptome, Genome and Exome Sequencing. <i>Blood</i> , 2010 , 116, 804-804	2.2	1
21	Implementation of Watson Genomic Analytics processing to improve the efficiency of interpreting whole genome sequencing data on patients with advanced cancers <i>Journal of Clinical Oncology</i> , 2015 , 33, e12549-e12549	2.2	1
20	Clinical outcomes after whole genome sequencing in patients with metastatic non-small cell lung cancer <i>Journal of Clinical Oncology</i> , 2017 , 35, e20563-e20563	2.2	1
19	Early-stage economic analysis of research-based comprehensive genomic sequencing for advanced cancer care. <i>Journal of Community Genetics</i> , 2021 , 1	2.5	1
18	MotifOrganizer: a scalable model-based motif clustering tool for mammalian genomes. <i>Frontiers in Bioscience - Elite</i> , 2013 , 5, 785-97	1.6	1
17	Complete Chloroplast Genome Sequence of a Black Spruce (Picea mariana) from Eastern Canada. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	1
16	An approach to rapid characterization of DMD copy number variants for prenatal risk assessment. <i>American Journal of Medical Genetics, Part A</i> , 2021 , 185, 2541-2545	2.5	1
15	A Scalable Strand-Specific Protocol Enabling Full-Length Total RNA Sequencing From Single Cells. <i>Frontiers in Genetics</i> , 2021 , 12, 665888	4.5	1
14	Molecular etiology of an indolent lymphoproliferative disorder determined by whole-genome sequencing. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a000679	2.8	1
13	Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous Variant <i>Genes</i> , 2022 , 13,	4.2	1
12	Long-read genome sequencing resolves a complex 13q structural variant associated with syndromic anophthalmia <i>American Journal of Medical Genetics, Part A</i> , 2022 ,	2.5	0
11	An infant with congenital respiratory insufficiency and diaphragmatic paralysis: A novel BICD2 phenotype?. <i>American Journal of Medical Genetics, Part A</i> , 2021 ,	2.5	O
10	Rearrangement-mediated cis-regulatory alterations in advanced patient tumors reveal interactions with therapy. <i>Cell Reports</i> , 2021 , 37, 110023	10.6	0
9	Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in cancer. <i>Science Advances</i> , 2021 , 7, eabg6045	14.3	O
8	Establishing a Framework for the Clinical Translation of Germline Findings in Precision Oncology. <i>JNCI Cancer Spectrum</i> , 2020 , 4, pkaa045	4.6	0
7	Temporal Dynamics of Genomic Alterations in a Germline-Mutated Pancreatic Cancer With Low Genomic Instability Burden but Exceptional Response to Fluorouracil, Oxaliplatin, Leucovorin, and Irinotecan. <i>JCO Precision Oncology</i> , 2018 , 2,	3.6	O

A community approach to the cancer-variant-interpretation bottleneck. *Nature Cancer*, **2022**, 3, 522-525 15.4 o

Patient selection for a developmental therapeutics program using whole genome and Transcriptome analysis. *Investigational New Drugs*, **2020**, 38, 1601-1604

Expression of Gp78/Autocrine Motility Factor Receptor and Endocytosis of Autocrine Motility Factor in Human Thyroid Cancer Cells. *Cureus*, **2019**, 11, e4928

Loss of the Notch effector RBPJ promotes tumorigenesis. *Journal of Cell Biology*, **2014**, 207, 2076OIA225, 3

Thyroid Cancer: Identification of Gene Expression Markers for Diagnosis **2010**, 353-377

Recurrent DNA Mutations In Non-Hodgkin Lymphomas Reveal Candidate Therapeutic Targets.

Blood, 2010, 116, 632-632