
Hongliang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intelligent Omni-Surfaces: Ubiquitous Wireless Transmission by Reflective-Refractive Metasurfaces. IEEE Transactions on Wireless Communications, 2022, 21, 219-233.	6.1	71
2	Optimal Energy Management for Multi-Microgrid Under a Transactive Energy Framework With Distributionally Robust Optimization. IEEE Transactions on Smart Grid, 2022, 13, 599-612.	6.2	53
3	MetaRadar: Indoor Localization by Reconfigurable Metamaterials. IEEE Transactions on Mobile Computing, 2022, 21, 2895-2908.	3.9	29
4	3D Geo-Indistinguishability for Indoor Location-Based Services. IEEE Transactions on Wireless Communications, 2022, 21, 4682-4694.	6.1	6
5	Meta-IoT: Simultaneous Sensing and Transmission by Meta-Material Sensor-Based Internet of Things. IEEE Transactions on Wireless Communications, 2022, 21, 6048-6063.	6.1	4
6	HDMA: Holographic-Pattern Division Multiple Access. IEEE Journal on Selected Areas in Communications, 2022, 40, 1317-1332.	9.7	15
7	MetaSketch: Wireless Semantic Segmentation by Reconfigurable Intelligent Surfaces. IEEE Transactions on Wireless Communications, 2022, 21, 5916-5929.	6.1	9
8	Reconfigurable Holographic Surface-Enabled Multi-User Wireless Communications: Amplitude-Controlled Holographic Beamforming. IEEE Transactions on Wireless Communications, 2022, 21, 6003-6017.	6.1	20
9	Age-of-Information Minimization in Healthcare IoT Using Distributionally Robust Optimization. IEEE Internet of Things Journal, 2022, 9, 16154-16167.	5.5	16
10	Deployment for High Altitude Platform Systems With Perturbation: Distributionally Robust Optimization Approach. IEEE Communications Letters, 2022, 26, 1126-1130.	2.5	5
11	Aerial Refueling: Scheduling Wireless Energy Charging for UAV Enabled Data Collection. IEEE Transactions on Green Communications and Networking, 2022, 6, 1494-1510.	3.5	23
12	Meta-Wall: Intelligent Omni-Surfaces Aided Multi-Cell MIMO Communications. IEEE Transactions on Wireless Communications, 2022, 21, 7026-7039.	6.1	18
13	Two-Stage Resource Allocation in Reconfigurable Intelligent Surface Assisted Hybrid Networks via Multi-player Bandits. IEEE Transactions on Communications, 2022, 70, 3526-3541.	4.9	2
14	Holographic Integrated Sensing and Communication. IEEE Journal on Selected Areas in Communications, 2022, 40, 2114-2130.	9.7	28
15	Holographic Beamforming for Ultra Massive MIMO With Limited Radiation Amplitudes: How Many Quantized Bits Do We Need?. IEEE Communications Letters, 2022, 26, 1403-1407.	2.5	4
16	MetaRadar: Multi-Target Detection for Reconfigurable Intelligent Surface Aided Radar Systems. IEEE Transactions on Wireless Communications, 2022, 21, 6994-7010.	6.1	18
17	Intelligent Omni-Surfaces for Full-Dimensional Wireless Communications: Principles, Technology, and Implementation. IEEE Communications Magazine, 2022, 60, 39-45.	4.9	67
18	Mega-Constellation Design for Integrated Satellite-Terrestrial Networks for Global Seamless Connectivity. IEEE Wireless Communications Letters, 2022, 11, 1669-1673.	3.2	2

#	Article	IF	CITATIONS
19	Toward Ubiquitous Sensing and Localization With Reconfigurable Intelligent Surfaces. Proceedings of the IEEE, 2022, 110, 1401-1422.	16.4	33
20	Dual Codebook Design for Intelligent Omni-Surface Aided Communications. IEEE Transactions on Wireless Communications, 2022, 21, 9232-9245.	6.1	12
21	Meta-Material Sensor Based Internet of Things: Design, Optimization, and Implementation. IEEE Transactions on Communications, 2022, 70, 5645-5662.	4.9	2
22	Reconfigurable Refractive Surfaces: An Energy-Efficient Way to Holographic MIMO. IEEE Communications Letters, 2022, 26, 2490-2494.	2.5	9
23	Reconfigurable Intelligent Surface Aided Cell-Free MIMO Communications. IEEE Wireless Communications Letters, 2021, 10, 775-779.	3.2	33
24	Reconfigurable Intelligent Surface (RIS) Assisted Wireless Coverage Extension: RIS Orientation and Location Optimization. IEEE Communications Letters, 2021, 25, 269-273.	2.5	144
25	Towards Ubiquitous Positioning by Leveraging Reconfigurable Intelligent Surface. IEEE Communications Letters, 2021, 25, 284-288.	2.5	57
26	On Spatial Multiplexing Using Reconfigurable Intelligent Surfaces. IEEE Wireless Communications Letters, 2021, 10, 226-230.	3.2	15
27	Age of Information Minimization for Grant-Free Non-Orthogonal Massive Access Using Mean-Field Games. IEEE Transactions on Communications, 2021, 69, 7806-7820.	4.9	19
28	RIS Aided MIMO Communications. Wireless Networks, 2021, , 19-104.	0.3	0
29	Task Selection and Collision-Free Route Planning for Mobile Crowdsensing Using Multi-Population Mean-Field Games. IEEE Transactions on Green Communications and Networking, 2021, 5, 1947-1960.	3.5	11
30	Energy-Constrained Computation Offloading in Space-Air-Ground Integrated Networks Using Distributionally Robust Optimization. IEEE Transactions on Vehicular Technology, 2021, 70, 12113-12125.	3.9	28
31	MetaLocalization: Reconfigurable Intelligent Surface Aided Multi-User Wireless Indoor Localization. IEEE Transactions on Wireless Communications, 2021, 20, 7743-7757.	6.1	81
32	Convergences of RISs with Existing Wireless Technologies. Wireless Networks, 2021, , 105-160.	0.3	0
33	Trajectory Optimization and Resource Allocation for OFDMA UAV Relay Networks. IEEE Transactions on Wireless Communications, 2021, 20, 6634-6647.	6.1	29
34	RIS Aided RF Sensing and Localization. Wireless Networks, 2021, , 161-251.	0.3	2
35	Introductions and Basics. Wireless Networks, 2021, , 1-17.	0.3	0

RIS-Assisted mmWave Channel Estimation Using Convolutional Neural Networks., 2021, , .

13

#	Article	IF	CITATIONS
37	Reconfigurable Intelligent Surface Assisted Internet-of-Things: MAC Design and Optimization. , 2021, , .		1
38	RSS Fingerprinting Based Multi-user Outdoor Localization Using Reconfigurable Intelligent Surfaces. , 2021, , .		8
39	Joint Sensing Task Assignment and Collision-Free Trajectory Optimization for Mobile Vehicle Networks Using Mean-Field Games. IEEE Internet of Things Journal, 2021, 8, 8488-8503.	5.5	14
40	Reconfigurable Intelligent Surface Assisted Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2021, 20, 2792-2804.	6.1	75
41	Reconfigurable Intelligent Surface Assisted Multi-User Communications: How Many Reflective Elements Do We Need?. IEEE Wireless Communications Letters, 2021, 10, 1098-1102.	3.2	29
42	Distributionally Robust Optimization for Peak Age of Information Minimization in E-Health IoT. , 2021, , .		2
43	Channel Estimation Approach for RIS Assisted MIMO Systems. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 452-465.	4.9	40
44	Spatial Equalization Before Reception: Reconfigurable Intelligent Surfaces for Multi-Path Mitigation. , 2021, , .		16
45	Task Selection and Route Planning for Mobile Crowd Sensing Using Multi-Population Mean-Field Games. , 2021, , .		5
46	Guest editorial: Cellular Internet of UAVs for 5G and beyond. IET Communications, 2021, 15, 1259-1261.	1.5	0
47	Reconfigurable Intelligent Surfaces in 6G: Reflective, Transmissive, or Both?. IEEE Communications Letters, 2021, 25, 2063-2067.	2.5	70
48	Reconfigurable Holographic Surface: Holographic Beamforming for Metasurface-Aided Wireless Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 6255-6259.	3.9	31
49	Guest Editorial: Special Issue on Internet of UAVs Over Cellular Networks. IEEE Internet of Things Journal, 2021, 8, 9774-9775.	5.5	Ο
50	Beyond Cell-Free MIMO: Energy Efficient Reconfigurable Intelligent Surface Aided Cell-Free MIMO Communications. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 412-426.	4.9	77
51	MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 2021, 39, 2182-2197.	9.7	29
52	UAV-to-Device Underlay Communications: Age of Information Minimization by Multi-Agent Deep Reinforcement Learning. IEEE Transactions on Communications, 2021, 69, 4461-4475.	4.9	37
53	Ultra-Dense LEO Satellite Constellations: How Many LEO Satellites Do We Need?. IEEE Transactions on Wireless Communications, 2021, 20, 4843-4857.	6.1	56
54	Reconfigurable-Intelligent-Surface-Assisted MAC for Wireless Networks: Protocol Design, Analysis, and Optimization. IEEE Internet of Things Journal, 2021, 8, 14171-14186.	5.5	32

#	Article	IF	CITATIONS
55	Meta-material Sensors based Internet of Things for 6G Communications. , 2021, , .		3
56	Reconfigurable Holographic Surfaces for Future Wireless Communications. IEEE Wireless Communications, 2021, 28, 126-131.	6.6	30
57	Sum-rate Maximization for RIS-assisted Radar and Communication Coexistence System. , 2021, , .		8
58	Peer-to-Peer Energy Trading in DC Packetized Power Microgrids. IEEE Journal on Selected Areas in Communications, 2020, 38, 17-30.	9.7	15
59	Unmanned Aerial Vehicle Applications over Cellular Networks for 5G and Beyond. Wireless Networks, 2020, , .	0.3	47
60	Sensing and Communication Tradeoff Design for Aol Minimization in a Cellular Internet of UAVs. , 2020, , .		13
61	Beyond Intelligent Reflecting Surfaces: Reflective-Transmissive Metasurface Aided Communications for Full-Dimensional Coverage Extension. IEEE Transactions on Vehicular Technology, 2020, 69, 13905-13909.	3.9	87
62	Reconfigurable Intelligent Surface Based RF Sensing: Design, Optimization, and Implementation. IEEE Journal on Selected Areas in Communications, 2020, 38, 2700-2716.	9.7	114
63	Age of Information in a Cellular Internet of UAVs: Sensing and Communication Trade-Off Design. IEEE Transactions on Wireless Communications, 2020, 19, 6578-6592.	6.1	78
64	Sense-Store-Send: Trajectory Optimization for a Buffer-Aided Internet of UAVs. IEEE Communications Letters, 2020, 24, 2888-2892.	2.5	6
65	Cooperative Internet of UAVs: Distributed Trajectory Design by Multi-Agent Deep Reinforcement Learning. IEEE Transactions on Communications, 2020, 68, 6807-6821.	4.9	99
66	Beyond D2D: Full Dimension UAV-to-Everything Communications in 6G. IEEE Transactions on Vehicular Technology, 2020, 69, 6592-6602.	3.9	93
67	Hybrid Beamforming for Reconfigurable Intelligent Surface based Multi-User Communications: Achievable Rates With Limited Discrete Phase Shifts. IEEE Journal on Selected Areas in Communications, 2020, 38, 1809-1822.	9.7	318
68	Reconfigurable Intelligent Surfaces Assisted Communications With Limited Phase Shifts: How Many Phase Shifts Are Enough?. IEEE Transactions on Vehicular Technology, 2020, 69, 4498-4502.	3.9	232
69	Practical Hybrid Beamforming With Finite-Resolution Phase Shifters for Reconfigurable Intelligent Surface Based Multi-User Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 4565-4570.	3.9	110
70	Reinforcement Learning for a Cellular Internet of UAVs: Protocol Design, Trajectory Control, and Resource Management. IEEE Wireless Communications, 2020, 27, 116-123.	6.6	66
71	Cellular UAV-to-Device Communications: Trajectory Design and Mode Selection by Multi-Agent Deep Reinforcement Learning. IEEE Transactions on Communications, 2020, 68, 4175-4189.	4.9	58
72	Cellular Assisted UAV Sensing. Wireless Networks, 2020, , 101-221.	0.3	7

#	Article	IF	CITATIONS
73	Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 990-1002.	4.9	389
74	Overview of 5G and Beyond Communications. Wireless Networks, 2020, , 1-25.	0.3	0
75	UAV Assisted Cellular Communications. Wireless Networks, 2020, , 61-100.	0.3	4
76	Reconfigurable Intelligent Surface Assisted D2D Networks: Power and Discrete Phase Shift Design. , 2020, , .		3
77	Trajectory Optimization for UAV-to-Device Underlaid Cellular Networks by Mean-Field-Type Control. , 2020, , .		3
78	Aol Minimization for Grant-Free Massive Access with Short Packets using Mean-Field Games. , 2020, , .		4
79	Joint Task Assignment and Trajectory Optimization for a Mobile Robot Swarm by Mean-Field Game. , 2020, , .		3
80	Platoon Cooperation in Cellular V2X Networks for 5G and Beyond. IEEE Transactions on Wireless Communications, 2019, 18, 3919-3932.	6.1	82
81	Network Controlled D2D Communications: Licensed or Unlicensed Spectrum?. , 2019, , .		3
82	Device-to-Device Communications Underlaying Cellular Networks: To Use Unlicensed Spectrum or Not?. IEEE Transactions on Communications, 2019, 67, 6598-6611.	4.9	13
83	Cooperation Techniques for a Cellular Internet of Unmanned Aerial Vehicles. IEEE Wireless Communications, 2019, 26, 167-173.	6.6	54
84	Peer to Peer Packet Dispatching in DC Power Packetized Microgrids. , 2019, , .		1
85	Cooperative Trajectory Optimization for a Cellular Internet of UAVs. , 2019, , .		1
86	Joint Platoon Formation and Resource Allocation for Connected Vehicles by Cellular V2X Communication. , 2019, , .		3
87	Peer-to-Peer Energy Trading for Local Area Packetized Power Network. , 2019, , .		Ο
88	Cellular UAV-to-X Communications: Design and Optimization for Multi-UAV Networks. IEEE Transactions on Wireless Communications, 2019, 18, 1346-1359.	6.1	281
89	Dual Trajectory Optimization for a Cooperative Internet of UAVs. IEEE Communications Letters, 2019, 23, 1093-1096.	2.5	20

90 Device-to-Device Communications over Unlicensed Spectrum. , 2019, , 1205-1234.

0

#	Article	IF	CITATIONS
91	IoT-U: Cellular Internet-of-Things Networks Over Unlicensed Spectrum. IEEE Transactions on Wireless Communications, 2019, 18, 2477-2492.	6.1	29
92	Trajectory Optimization and Resource Allocation for Multi-User OFDMA UAV Relay Networks. , 2019, , .		6
93	Distributed Trajectory Design for Cooperative Internet of UAVs Using Deep Reinforcement Learning. , 2019, , .		11
94	Trajectory Design for Overlay UAV-to-Device Communications by Deep Reinforcement Learning. , 2019, , .		2
95	Virtual Resource Allocation for Mobile Edge Computing: A Hypergraph Matching Approach. , 2019, , .		4
96	Hypergraph-Based SCMA Codebook Allocation in User-Centric Ultra-Dense Networks with Machine Learning. , 2019, , .		2
97	Peer-to-Peer Energy Trading in DC Packetized Power Microgrids Using Iterative Auction. , 2019, , .		3
98	Peer-to-Peer Packet Dispatching for Multi-Router Local Area Packetized Power Networks. IEEE Transactions on Smart Grid, 2019, 10, 5748-5758.	6.2	15
99	Cellular Cooperative Unmanned Aerial Vehicle Networks With Sense-and-Send Protocol. IEEE Internet of Things Journal, 2019, 6, 1754-1767.	5.5	37
100	Reinforcement Learning for Decentralized Trajectory Design in Cellular UAV Networks With Sense-and-Send Protocol. IEEE Internet of Things Journal, 2019, 6, 6177-6189.	5.5	77
101	Ultra-Dense LEO: Integrating Terrestrial-Satellite Networks Into 5C and Beyond for Data Offloading. IEEE Transactions on Wireless Communications, 2019, 18, 47-62.	6.1	174
102	Load Balancing for 5G Ultra-Dense Networks Using Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2018, 17, 4039-4050.	6.1	52
103	Joint Trajectory and Power Optimization for UAV Relay Networks. IEEE Communications Letters, 2018, 22, 161-164.	2.5	367
104	Hypergraph Theory in Wireless Communication Networks. Springer Briefs in Electrical and Computer Engineering, 2018, , .	0.3	7
105	Resource Allocation for Cross-Cell Device-to-Device Communications. Springer Briefs in Electrical and Computer Engineering, 2018, , 41-56.	0.3	0
106	Radio Resource Allocation for Device-to-Device Underlay Communications. Springer Briefs in Electrical and Computer Engineering, 2018, , 21-39.	0.3	3
107	Cooperative Sensing and Transmission for Cellular Network Controlled Unmanned Aerial Vehicles. , 2018, , .		3
108	Resource Allocation and Trajectory Design for Cellular UAV-to-X Communication Networks in 5G. , 2018, , .		6

#	Article	IF	CITATIONS
109	Cellular Internet-of-Things (IoT) Communications over Unlicensed Band. , 2018, , .		3
110	Data Offloading in Ultra-Dense LEO-Based Integrated Terrestrial-Satellite Networks. , 2018, , .		9
111	Peer to Peer Packet Dispatching for Local Area Packetized Power Networks with Multiple Routers. , 2018, , .		2
112	Joint Trajectory and Power Optimization for UAV Sensing Over Cellular Networks. IEEE Communications Letters, 2018, 22, 2382-2385.	2.5	52
113	Cellular V2X Communications in Unlicensed Spectrum for 5G Networks. , 2018, , .		4
114	UAV Relaying: Power Allocation and Trajectory Optimization Using Decode-and-Forward Protocol. , 2018, , .		42
115	Cellular V2X Communications in Unlicensed Spectrum: Harmonious Coexistence With VANET in 5G Systems. IEEE Transactions on Wireless Communications, 2018, 17, 5212-5224.	6.1	111
116	D2D-U: Device-to-Device Communications in Unlicensed Bands for 5G System. IEEE Transactions on Wireless Communications, 2017, 16, 3507-3519.	6.1	131
117	Device-to-device communications underlaying cellular networks in unlicensed bands. , 2017, , .		8
118	Hypergraph Theory: Applications in 5G Heterogeneous Ultra-Dense Networks. , 2017, 55, 70-76.		40
119	Load Balancing for Cellular Networks Using Device-to-Device Communications. , 2017, , .		2
120	Device-to-Device Communications over Unlicensed Spectrum. , 2017, , 1-30.		2
121	Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory. IEEE Transactions on Wireless Communications, 2016, , 1-1.	6.1	63
122	Hypergraph based resource allocation for cross-cell device-to-device communications. , 2016, , .		5
123	Graph-based resource allocation for device-to-device communications aided cellular network. , 2014, , \cdot		9
124	Wireless Device-to-Device hypergraph optimization. , 2014, , .		0
125	Graph-based resource allocation for D2D communications underlaying cellular networks. , 2013, , .		29
126	Ageâ€optimal design for UAVâ€assisted grantâ€free nonâ€orthogonal massive access: Meanâ€field game approach. IET Communications, 0, , .	1.5	0

#	Article	IF	CITATIONS
127	Guest Editorial: Intelligent metasurfaces for smart connectivity. IET Communications, 0, , .	1.5	0