Peter Andolfatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805322/publications.pdf

Version: 2024-02-01

90 papers 9,960 citations

52 h-index 89 g-index

105 all docs

 $\begin{array}{c} 105 \\ \\ \text{docs citations} \end{array}$

105 times ranked 8907 citing authors

#	Article	IF	Citations
1	Adaptive evolution of non-coding DNA in Drosophila. Nature, 2005, 437, 1149-1152.	13.7	576
2	Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species?. PLoS Biology, 2012, 10, e1001388.	2.6	485
3	Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Research, 2011, 21, 610-617.	2.4	390
4	The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics, 2013, 45, 831-835.	9.4	374
5	The Population Genetics of the Origin and Divergence of the <i>Drosophila simulans</i> Species. Genetics, 2000, 156, 1913-1931.	1.2	356
6	Pervasive Natural Selection in the Drosophila Genome?. PLoS Genetics, 2009, 5, e1000495.	1.5	329
7	Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science, 2018, 360, 656-660.	6.0	314
8	HOW COMMON IS HOMOPLOID HYBRID SPECIATION?. Evolution; International Journal of Organic Evolution, 2014, 68, 1553-1560.	1.1	273
9	The Evolution of Gene Regulation Underlies a Morphological Difference between Two Drosophila Sister Species. Cell, 2008, 132, 783-793.	13.5	269
10	Parallel Molecular Evolution in an Herbivore Community. Science, 2012, 337, 1634-1637.	6.0	252
11	Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations. Genome Research, 2005, 15, 790-799.	2.4	247
12	Inference of Population Structure Under a Dirichlet Process Model. Genetics, 2007, 175, 1787-1802.	1.2	246
13	Contrasting Patterns of X-Linked and Autosomal Nucleotide Variation in Drosophila melanogaster and Drosophila simulans. Molecular Biology and Evolution, 2001, 18, 279-290.	3.5	242
14	Approximate Bayesian Inference Reveals Evidence for a Recent, Severe Bottleneck in a Netherlands Population of Drosophila melanogaster. Genetics, 2006, 172, 1607-1619.	1.2	239
15	Genome sequencing reveals complex speciation in the <i>Drosophila simulans</i> clade. Genome Research, 2012, 22, 1499-1511.	2.4	220
16	Hitchhiking effects of recurrent beneficial amino acid substitutions in the <i>Drosophila melanogaster</i> genome. Genome Research, 2007, 17, 1755-1762.	2.4	188
17	EXTENSIVE INTROGRESSION OF MITOCHONDRIAL DNA RELATIVE TO NUCLEAR GENES IN THE DROSOPHILA YAKUBA SPECIES GROUP. Evolution; International Journal of Organic Evolution, 2006, 60, 292-302.	1.1	187
18	Testing Models of Selection and Demography in <i>Drosophila simulans</i> . Genetics, 2002, 162, 203-216.	1.2	181

#	Article	IF	CITATIONS
19	PHYLOGENOMICS REVEALS EXTENSIVE RETICULATE EVOLUTION IN <i>XIPHOPHORUS </i> International Journal of Organic Evolution, 2013, 67, 2166-2179.	1.1	176
20	Adaptive hitchhiking effects on genome variability. Current Opinion in Genetics and Development, 2001, 11, 635-641.	1.5	168
21	Population genetics of the coral <i>Acropora millepora</i> : Toward genomic prediction of bleaching. Science, 2020, 369, .	6.0	167
22	A Genome-Wide Departure From the Standard Neutral Model in Natural Populations of Drosophila. Genetics, 2000, 156, 257-268.	1.2	163
23	Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biology, 2005, 6, R67.	13.9	158
24	A second-generation assembly of the <i>Drosophila simulans</i> genome provides new insights into patterns of lineage-specific divergence. Genome Research, 2013, 23, 89-98.	2.4	157
25	Unusual Haplotype Structure at the Proximal Breakpoint of In(2L)t in a Natural Population of Drosophila melanogaster. Genetics, 1999, 153, 1297-1311.	1.2	151
26	A Genomic Map of the Effects of Linked Selection in Drosophila. PLoS Genetics, 2016, 12, e1006130.	1.5	145
27	Inversion polymorphisms and nucleotide variability in Drosophila. Genetical Research, 2001, 77, 1-8.	0.3	136
28	Progress and prospects in mapping recent selection in the genome. Heredity, 2007, 98, 340-348.	1.2	121
29	The Effect of Gene Conversion on Intralocus Associations. Genetics, 1998, 148, 1397-1399.	1.2	115
30	High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species. ELife, 2014, 3 , .	2.8	115
31	Regions of Lower Crossing Over Harbor More Rare Variants in African Populations of <i>Drosophila melanogaster</i> . Genetics, 2001, 158, 657-665.	1.2	111
32	On the Utility of Short Intron Sequences as a Reference for the Detection of Positive and Negative Selection in Drosophila. Molecular Biology and Evolution, 2010, 27, 1226-1234.	3.5	105
33	Patterns of Evolutionary Constraints in Intronic and Intergenic DNA of Drosophila. Genome Research, 2004, 14, 273-279.	2.4	99
34	The Impact of Natural Selection on the Genome: Emerging Patterns in <i>Drosophila</i> and <i>Arabidopsis</i> . Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 193-213.	3.8	97
35	Structurama: Bayesian Inference of Population Structure. Evolutionary Bioinformatics, 2011, 7, EBO.S6761.	0.6	95
36	An Approximate Bayesian Estimator Suggests Strong, Recurrent Selective Sweeps in Drosophila. PLoS Genetics, 2008, 4, e1000198.	1.5	94

#	Article	IF	Citations
37	Reproductive Isolation of Hybrid Populations Driven by Genetic Incompatibilities. PLoS Genetics, 2015, 11, e1005041.	1.5	93
38	Positive and Negative Selection on Noncoding DNA in Drosophila simulans. Molecular Biology and Evolution, 2008, 25, 1825-1834.	3.5	91
39	Ancient hybridization and genomic stabilization in a swordtail fish. Molecular Ecology, 2016, 25, 2661-2679.	2.0	91
40	Landscape of Standing Variation for Tandem Duplications in Drosophila yakuba and Drosophila simulans. Molecular Biology and Evolution, 2014, 31, 1750-1766.	3.5	89
41	Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science, 2020, 368, 731-736.	6.0	86
42	GENETIC ARCHITECTURE AND ADAPTIVE SIGNIFICANCE OF THE SELFING SYNDROME IN <i> CAPSELLA </i> Evolution; International Journal of Organic Evolution, 2012, 66, 1360-1374.	1.1	79
43	A Population Genetics-Phylogenetics Approach to Inferring Natural Selection in Coding Sequences. PLoS Genetics, 2011, 7, e1002395.	1.5	78
44	Assortative mating and persistent reproductive isolation in hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10936-10941.	3.3	77
45	Selection, Recombination and Demographic History in Drosophila miranda. Genetics, 2006, 174, 2045-2059.	1.2	73
46	The withinâ€host dynamics of infection in transâ€generationally primed flour beetles. Molecular Ecology, 2017, 26, 3794-3807.	2.0	70
47	Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution; International Journal of Organic Evolution, 2006, 60, 292-302.	1.1	69
48	X chromosomes and autosomes evolve at similar rates in Drosophila: No evidence for faster-X protein evolution. Genome Research, 2006, 16, 498-504.	2.4	67
49	Dichotomy of Dosage Compensation along the Neo Z Chromosome of the Monarch Butterfly. Current Biology, 2019, 29, 4071-4077.e3.	1.8	66
50	DISCORDANT DIVERGENCE TIMES AMONG Z-CHROMOSOME REGIONS BETWEEN TWO ECOLOGICALLY DISTINCT SWALLOWTAIL BUTTERFLY SPECIES. Evolution; International Journal of Organic Evolution, 2007, 61, 912-927.	1.1	65
51	Effective Population Size and the Efficacy of Selection on the X Chromosomes of Two Closely Related Drosophila Species. Genome Biology and Evolution, 2011, 3, 114-128.	1.1	59
52	Recombination and the Frequency Spectrum in Drosophila melanogaster and Drosophila simulans. Molecular Biology and Evolution, 2001, 18, 291-298.	3.5	55
53	Linkage Disequilibrium Patterns Across a Recombination Gradient in African <i>Drosophila melanogaster</i>	1.2	55
54	Fatty-acid-binding protein in locust flight muscle. Developmental changes of expression, concentration and intracellular distribution. FEBS Journal, 1992, 210, 1045-1051.	0.2	54

#	Article	IF	Citations
55	Correlated Evolution of Nearby Residues in Drosophilid Proteins. PLoS Genetics, 2011, 7, e1001315.	1.5	48
56	Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. Molecular Biology and Evolution, 2017, 34, 2271-2284.	3.5	46
57	Molecular Variation at the In(2L)t Proximal Breakpoint Site in Natural Populations of Drosophila melanogaster and D. simulans. Genetics, 2000, 154, 1681-1691.	1.2	44
58	What do we mean when we talk about hybrid speciation?. Heredity, 2018, 120, 379-382.	1.2	43
59	Controlling Type-I Error of the McDonald–Kreitman Test in Genomewide Scans for Selection on Noncoding DNA. Genetics, 2008, 180, 1767-1771.	1.2	41
60	Population differences in olfaction accompany host shift in <i>Drosophila mojavensis</i> Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161562.	1.2	40
61	The evolution of cardenolideâ€resistant forms of Na ⁺ ,K ⁺ â€ATPase in Danainae butterflies. Molecular Ecology, 2012, 21, 340-349.	2.0	38
62	A novel family of secreted insect proteins linked to plant gall development. Current Biology, 2021, 31, 1836-1849.e12.	1.8	37
63	Evolution of Multiple Additive Loci Caused Divergence between Drosophila yakuba and D. santomea in Wing Rowing during Male Courtship. PLoS ONE, 2012, 7, e43888.	1.1	33
64	Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution. Current Biology, 2019, 29, 2157-2166.e6.	1.8	33
65	Predictability in the evolution of Orthopteran cardenolide insensitivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180246.	1.8	33
66	Cloning and sequence of the gene encoding the muscle fatty acid binding protein from the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 2001, 31, 553-562.	1.2	32
67	Evolution of the tan Locus Contributed to Pigment Loss in Drosophila santomea: A Response to Matute etÂal Cell, 2009, 139, 1189-1196.	13.5	32
68	Methods to Detect Selection on Noncoding DNA. Methods in Molecular Biology, 2012, 856, 141-159.	0.4	29
69	NO ASSOCIATION BETWEEN MITOCHONDRIAL DNA HAPLOTYPES AND A FEMALE-LIMITED MIMICRY PHENOTYPE IN PAPILIO GLAUCUS. Evolution; International Journal of Organic Evolution, 2003, 57, 305-316.	1.1	28
70	Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo. ELife, 2019, 8, .	2.8	28
71	Transformed hairy roots of Mesembryantemum crystallinum: gene expression patterns upon salt stress. Physiologia Plantarum, 1994, 90, 708-714.	2.6	25
72	AN EVALUATION OF THE HYBRID SPECIATION HYPOTHESIS FOR (i) XIPHOPHORUS CLEMENCIAE (/i) BASED ON WHOLE GENOME SEQUENCES. Evolution; International Journal of Organic Evolution, 2013, 67, 1155-1168.	1.1	25

#	Article	IF	Citations
73	Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans. PLoS ONE, 2015, 10, e0132184.	1.1	25
74	The Genetic Architecture of Variation in the Sexually Selected Sword Ornament and Its Evolution in Hybrid Populations. Current Biology, 2021, 31, 923-935.e11.	1.8	21
75	Developmental changes of FABP concentration, expression, and intracellular distribution in locust flight muscle. Molecular and Cellular Biochemistry, 1993, 123, 153-158.	1.4	20
76	Concerted evolution reveals co-adapted amino acid substitutions in Na+K+-ATPase of frogs that prey on toxic toads. Current Biology, 2021, 31, 2530-2538.e10.	1.8	20
77	Revised Annotations, Sex-Biased Expression, and Lineage-Specific Genes in the <i>Drosophila melanogaster</i>	0.8	17
78	Genome-wide QTL mapping of saltwater tolerance in sibling species of Anopheles (malaria vector) mosquitoes. Heredity, 2015, 115, 471-479.	1.2	17
79	Phylogenetic incongruence and the evolutionary origins of cardenolide-resistant forms of Na ⁺ ,K ⁺ -ATPase in <i>Danaus</i> butterflies. Evolution; International Journal of Organic Evolution, 2016, 70, 1913-1921.	1.1	16
80	Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex. Genetics, 2017, 205, 589-603.	1.2	14
81	NO ASSOCIATION BETWEEN MITOCHONDRIAL DNA HAPLOTYPES AND A FEMALE-LIMITED MIMICRY PHENOTYPE IN PAPILIO GLAUCUS. Evolution; International Journal of Organic Evolution, 2003, 57, 305.	1.1	13
82	Genetics of Intraspecies Variation in Avoidance Behavior Induced by a Thermal Stimulus in <i>Caenorhabditis elegans </i>	1.2	9
83	simMSG: an experimental design tool for highâ€throughput genotyping of hybrids. Molecular Ecology Resources, 2016, 16, 183-192.	2.2	8
84	How the manakin got its crown: A novel trait that is unlikely to cause speciation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4144-E4145.	3.3	8
85	Transformed hairy roots of Mesembryanthemum crystauinum: gene expression patterns upon salt stress. Physiologia Plantarum, 1994, 90, 708-714.	2.6	7
86	Genomic signatures of spatially divergent selection at clownfish range margins. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210407.	1.2	6
87	EXTENSIVE INTROGRESSION OF MITOCHONDRIAL DNA RELATIVE TO NUCLEAR GENES IN THE DROSOPHILA YAKUBA SPECIES GROUP. Evolution; International Journal of Organic Evolution, 2006, 60, 292.	1.1	4
88	<i>Alleleâ€specific</i> knockouts reveal a role for <i>aponticâ€like</i> in the evolutionary loss of larval melanin pigmentation in the domesticated silkworm, <i>Bombyx mori</i> . Insect Molecular Biology, 0, , .	1.0	4
89	WHotLAMP: A simple, inexpensive, and sensitive molecular test for the detection of SARS-CoV-2 in saliva. PLoS ONE, 2021, 16, e0257464.	1.1	2
90	Developmental changes of FABP concentration, expression, and intracellular distribution in locust flight muscle., 1993,, 153-158.		0