Hicham Benhayoune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. Coatings, 2022, 12, 539.	2.6	22
2	Advanced Biomaterials and Coatings. Coatings, 2022, 12, 965.	2.6	3
3	Nanomechanical Behavior, Adhesion and Corrosion Resistance of Hydroxyapatite Coatings for Orthopedic Implant Applications. Coatings, 2021, 11, 477.	2.6	9
4	Effect of surface mechanical attrition treatment on the microstructure of cobalt–chromium–molybdenum biomedical alloy. Microscopy Research and Technique, 2021, 84, 238-245.	2.2	6
5	Electrophoretic Deposition of 45S5 Bioglass® Coatings on the Ti6Al4V Prosthetic Alloy with Improved Mechanical Properties. Coatings, 2020, 10, 1192.	2.6	12
6	Electrodeposition of biphasic calcium phosphate coatings with improved dissolution properties. Materials Chemistry and Physics, 2019, 236, 121797.	4.0	11
7	Electrodeposition of cobalt-substituted calcium phosphate coatings on Ti22Nb6Zr alloy for bone implant applications. Journal of Alloys and Compounds, 2019, 793, 576-582.	5.5	20
8	Influence of the surface mechanical attrition treatment (SMAT) on the corrosion behavior of Co28Cr6Mo alloy in Ringer's solution. Journal of Solid State Electrochemistry, 2018, 22, 1091-1098.	2.5	16
9	Structural and morphological study of electrodeposited calcium phosphate materials submitted to thermal treatment. Materials Letters, 2017, 209, 27-31.	2.6	8
10	Effect of annealing temperature on the structural and mechanical properties of coatings prepared by electrophoretic deposition of TiO2 nanoparticles. Thin Solid Films, 2017, 638, 201-212.	1.8	22
11	Structural Analysis of Prosthetic Coatings Elaborated by Electrochemical Deposition. Key Engineering Materials, 2017, 758, 105-110.	0.4	Ο
12	Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surface and Coatings Technology, 2016, 301, 94-99.	4.8	76
13	A New Process for the Thermal Treatment of Calcium Phosphate Coatings Electrodeposited on Ti6Al4V Substrate. Advanced Engineering Materials, 2015, 17, 1608-1615.	3.5	14
14	Electrophoretic Deposition of Hydroxyapatite and 58S Bioactive Glass Coatings on the Ti6Al4V Alloy Subjected to Surface Mechanical Attrition Treatment. Key Engineering Materials, 2015, 654, 149-153.	0.4	3
15	Characterization of <scp>HA</scp> / <scp>FHA</scp> Coatings on Smooth and Rough Implant Surface by Pulsed Electrodeposition. International Journal of Applied Ceramic Technology, 2015, 12, E222.	2.1	9
16	A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Materials Science and Engineering C, 2015, 47, 407-412.	7.3	81
17	Benefit of a Surface Nanocrystallization Treatment on Co28Cr6Mo Abrasive Wear Properties. Advanced Materials Research, 2014, 966-967, 435-441.	0.3	3
18	Chitosan effects on glass matrices evaluated by biomaterial. MAS-NMR and biological investigations. Korean Journal of Chemical Engineering, 2013, 30, 1775-1783.	2.7	16

HICHAM BENHAYOUNE

#	Article	IF	CITATIONS
19	Human osteoblast-like cells response to pulsed electrodeposited calcium phosphate coatings. RSC Advances, 2013, 3, 11148.	3.6	15
20	Microstructural characterization of Tiâ€6Alâ€4V alloy subjected to the duplex SMAT/plasma nitriding. Microscopy Research and Technique, 2013, 76, 897-903.	2.2	9
21	Morphological modifications of electrodeposited calcium phosphate coatings under amino acids effect. Applied Surface Science, 2013, 268, 343-348.	6.1	27
22	Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties. Materials Science and Engineering C, 2013, 33, 4260-4265.	7.3	33
23	Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition. MATEC Web of Conferences, 2013, 7, 04018.	0.2	Ο
24	Electrophoretic Deposition of Bioactive Glass Coatings on Ti12Mo5Ta Alloy. Key Engineering Materials, 2012, 507, 135-140.	0.4	10
25	Nanoscale Surface Modification of a Prosthetic Material: Case of Ti6Al4V into Ringer's Solution. Journal of Nanoscience and Nanotechnology, 2012, 12, 4956-4961.	0.9	3
26	In vitro corrosion behavior of electrodeposited calcium phosphate coatings on Ti6Al4V substrates. Journal of Solid State Electrochemistry, 2012, 16, 3069-3077.	2.5	29
27	A Simple Method to Assess Surface Roughness by Photothermal Investigation (PTR) Using an Effective Semitransparent Layer. International Journal of Thermophysics, 2012, 33, 1960-1965.	2.1	4
28	Thermal Treatment Optimization of Electrodeposited Hydroxyapatite Coatings on Ti6Al4V Substrate. Advanced Engineering Materials, 2012, 14, 377-382.	3.5	27
29	In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate. Journal of Materials Science: Materials in Medicine, 2011, 22, 753-761.	3.6	42
30	Structural Characterization of Electrodeposited Strontium Substituted Calcium Phosphate Coatings. Journal of Biomaterials and Tissue Engineering, 2011, 1, 68-75.	0.1	6
31	Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings. Materials Characterization, 2010, 61, 786-795.	4.4	53
32	Elaboration of Monophasic and Biphasic Calcium Phosphate Coatings on Ti6Al4V Substrate by Pulsed Electrodeposition Current. Advanced Engineering Materials, 2010, 12, B192.	3.5	29
33	Cryoâ€Xâ€ray analysis—A novel tool to better understand the physicochemical reactions at the bioglass/biological fluid interface. Microscopy Research and Technique, 2008, 71, 684-688.	2.2	2
34	In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Materials Characterization, 2008, 59, 129-133.	4.4	68
35	Behavior of human osteoblast-like cells in contact with electrodeposited calcium phosphate coatings. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 108-115.	3.4	29
36	Effects of bioactive glass particles and their ionic products on intracellular concentrations. Journal of Biomedical Materials Research Part B, 2003, 65A, 441-446.	3.1	12

#	Article	IF	CITATIONS
37	Kinetics of Short-Term Physicochemical Reactions at the Periphery of Bioactive Glass Particles. A Transmission Electron Microscopy Cryo-X-ray Microanalysis of Diffusible Ions. Langmuir, 2003, 19, 3840-3847.	3.5	7
38	In vitro effects of zirconia and alumina particles on human blood monocyte-derived macrophages: X-ray microanalysis and flow cytometric studies. Journal of Biomedical Materials Research Part B, 2000, 52, 587-594.	3.1	24