Konstantin S Vassilenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805240/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Research, 2004, 33, D139-D140.	14.5	1,121
2	The Major Protein of Messenger Ribonucleoprotein Particles in Somatic Cells Is a Member of the Y-box Binding Transcription Factor Family. Journal of Biological Chemistry, 1995, 270, 3186-3192.	3.4	163
3	Determination of Protein Tertiary Structure Class from Circular Dichroism Spectra. Analytical Biochemistry, 1994, 222, 176-184.	2.4	124
4	Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Research, 2011, 39, 5555-5567.	14.5	71
5	Native-like secondary structure of molten globules. BBA - Proteins and Proteomics, 2002, 1594, 168-177.	2.1	69
6	Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Science, 1996, 5, 1844-1851.	7.6	66
7	Effect of Self-Association on the Structural Organization of Partially Folded Proteins: Inactivated Actin. Biophysical Journal, 1999, 77, 2788-2800.	0.5	45
8	Mg2+ binding and structural stability of mature and in vitro synthesized unmodified Escherichia coli tRNAPhe. Nucleic Acids Research, 1998, 26, 2723-2728.	14.5	44
9	Quantitative analysis of ribosome–mRNA complexes at different translation stages. Nucleic Acids Research, 2010, 38, e15-e15.	14.5	32
10	Functional Cyclization of Eukaryotic mRNAs. International Journal of Molecular Sciences, 2020, 21, 1677.	4.1	31
11	Translation of non-capped mRNAs in a eukaryotic cell-free system: acceleration of initiation rate in the course of polysome formation. Nucleic Acids Research, 2007, 35, 6547-6559.	14.5	28
12	Concerted action of two 3′ cap-independent translation enhancers increases the competitive strength of translated viral genomes. Nucleic Acids Research, 2017, 45, 9558-9572.	14.5	23
13	Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. Biochemistry (Moscow), 2021, 86, 1060-1094.	1.5	22
14	Preparation of active tRNA gene transcripts devoid of 3'-extended products and dimers. Nucleic Acids Research, 1998, 26, 2500-2501.	14.5	20
15	Translation initiation in eukaryotes: Versatility of the scanning model. Biochemistry (Moscow), 2012, 77, 1465-1477.	1.5	20
16	Identification of a Mg2+-sensitive ORF in the 5′-leader of TRPM7 magnesium channel mRNA. Nucleic Acids Research, 2014, 42, 12779-12788.	14.5	16
17	RbfA Is Involved in Two Important Stages of 30S Subunit Assembly: Formation of the Central Pseudoknot and Docking of Helix 44 to the Decoding Center. International Journal of Molecular Sciences, 2021, 22, 6140.	4.1	14
18	Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA. Nucleic Acids Research, 2018, 46, 11726-11742.	14.5	12

#	Article	IF	CITATIONS
19	Structure and stability of recombinant protein depend on the extra N-terminal methionine residue: S6 permutein from direct and fusion expression systems. BBA - Proteins and Proteomics, 1999, 1432, 324-332.	2.1	7
20	Abstract P-27: The 30S Ribosomal Subunit Assembly Factor Rbfa Plays a Key Role in the Formation of the Central Pseudoknot and in the Correct Docking of Helix 44 of the Decoding Center. International Journal of Biomedicine, 2021, 11, S23-S24.	0.2	0