List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/880522/publications.pdf Version: 2024-02-01

KALIDAS DAS

#	Article	IF	CITATIONS
1	Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Computers and Fluids, 2012, 64, 34-42.	2.5	108
2	Nanofluid flow over a non-linear permeable stretching sheet with partial slip. Journal of the Egyptian Mathematical Society, 2015, 23, 451-456.	1.2	77
3	Framing the effects of solar radiation on magneto-hydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms. Journal of Molecular Liquids, 2016, 222, 28-37.	4.9	77
4	Cattaneo–Christov intensity of magnetised upper-convected Maxwell nanofluid flow over an inclined stretching sheet: A generalised Fourier and Fick's perspective. International Journal of Mechanical Sciences, 2017, 130, 167-173.	6.7	77
5	The squeezing flow of Cu-water and Cu-kerosene nanofluids between two parallel plates. AEJ - Alexandria Engineering Journal, 2016, 55, 1177-1186.	6.4	76
6	Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions. AEJ - Alexandria Engineering Journal, 2018, 57, 61-71.	6.4	71
7	Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer. AEJ - Alexandria Engineering Journal, 2015, 54, 815-821.	6.4	69
8	Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. Journal of Molecular Liquids, 2016, 220, 518-526.	4.9	69
9	Nanofluid flow over an unsteady stretching surface in presence of thermal radiation. AEJ - Alexandria Engineering Journal, 2014, 53, 737-745.	6.4	66
10	Radiation and melting effects on MHD boundary layer flow over a moving surface. Ain Shams Engineering Journal, 2014, 5, 1207-1214.	6.1	61
11	Nanofluid bioconvection in presence of gyrotactic microorganisms and chemical reaction in a porous medium. Journal of Mechanical Science and Technology, 2015, 29, 4841-4849.	1.5	56
12	Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation. Heliyon, 2019, 5, e01216.	3.2	53
13	Flow and heat transfer characteristics of nanofluids in a rotating frame. AEJ - Alexandria Engineering Journal, 2014, 53, 757-766.	6.4	52
14	The onset of nanofluid flow past a convectively heated shrinking sheet in presence of heat source/sink: A Lie group approach. Applied Thermal Engineering, 2016, 103, 38-46.	6.0	48
15	Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slendering stretching sheet using NDM. European Physical Journal Plus, 2016, 131, 1.	2.6	44
16	Numerical simulation of nanofluid flow with convective boundary condition. Journal of the Egyptian Mathematical Society, 2015, 23, 435-439.	1.2	40
17	Influence of Variable Fluid Properties on Nanofluid Flow over a Wedge with Surface Slip. Arabian Journal for Science and Engineering, 2018, 43, 2119-2131.	3.0	39
18	Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel. Journal of Thermal Analysis and Calorimetry, 2019, 138, 461-477.	3.6	39

#	Article	IF	CITATIONS
19	Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet. Journal of Computational Design and Engineering, 2016, 3, 330-336.	3.1	38
20	Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Applied Nanoscience (Switzerland), 2018, 8, 369-378.	3.1	35
21	Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticles flux. European Physical Journal Plus, 2017, 132, 1.	2.6	33
22	Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties. International Journal of Heat and Mass Transfer, 2012, 55, 7166-7174.	4.8	32
23	Framing the features of MHD boundary layer flow past an unsteady stretching cylinder in presence of non-uniform heat source. Journal of Molecular Liquids, 2017, 225, 418-425.	4.9	31
24	Outlining the impact of second-order slip and multiple convective condition on nanofluid flow: A new statistical layout. Canadian Journal of Physics, 2018, 96, 104-111.	1.1	31
25	Nanofluid flow over a shrinking sheet with surface slip. Microfluidics and Nanofluidics, 2014, 16, 391-401.	2.2	28
26	Fabrication of active and passive controls of nanoparticles of unsteady nanofluid flow from a spinning body using HPM. European Physical Journal Plus, 2017, 132, 1.	2.6	28
27	Solar Radiation Effects on Cu–Water Nanofluid Flow over a Stretching Sheet with Surface Slip and Temperature Jump. Arabian Journal for Science and Engineering, 2014, 39, 9015-9023.	1.1	24
28	Framing the Cattaneo–Christov Heat Flux Phenomena on CNT- Based Maxwell Nanofluid Along Stretching Sheet with Multiple Slips. Arabian Journal for Science and Engineering, 2018, 43, 1177-1188.	3.0	24
29	On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium. Journal of Molecular Liquids, 2016, 223, 725-733.	4.9	23
30	Ag-water nanofluid flow over an inclined porous plate embedded in a non-Darcy porous medium due to solar radiation. Journal of Mechanical Science and Technology, 2017, 31, 2443-2449.	1.5	23
31	Influence of Hall current effect on hybrid nanofluid flow over a slenderÂstretching sheet with zero nanoparticleÂflux. Heat Transfer, 2021, 50, 7232-7250.	3.0	23
32	Effect of magnetic field on slip flow of nanofluid induced by a non-linear permeable stretching surface. Applied Thermal Engineering, 2016, 104, 758-766.	6.0	22
33	Analytical approach to a Jeffrey nanofluid flow towards a Stagnation point coexisting with Magnetic field and Melting heat effects. Journal of Molecular Liquids, 2017, 229, 443-452.	4.9	22
34	Influence of chemical reaction and viscous dissipation on MHD mixed convection flow. Journal of Mechanical Science and Technology, 2014, 28, 1881-1885.	1.5	20
35	On the heat transport mechanism and entropy generation in a nozzle of liquid rocket engine using ferrofluid: A computational framework. Journal of Computational Design and Engineering, 2019, 6, 739-750.	3.1	19
36	Influence of nanoparticle diameter and interfacial layer on magnetohydrodynamic nanofluid flow with melting heat transfer inside rotating channel. Mathematical Methods in the Applied Sciences, 2021, 44, 1161-1175.	2.3	19

#	Article	IF	CITATIONS
37	Lie group analysis of stagnation-point flow of a nanofluid. Microfluidics and Nanofluidics, 2013, 15, 267-274.	2.2	17
38	Effect of magnetic field on Oldroyd-B type nanofluid flow over a permeable stretching surface. Propulsion and Power Research, 2018, 7, 238-246.	4.3	13
39	Computational analysis of thermal and mass transmit in a hydromagnetic hybrid nanofluid flow over a slippery curved surface. International Journal of Ambient Energy, 2022, 43, 6062-6070.	2.5	13
40	MELTING EFFECTS ON THE STAGNATION POINT FLOW OF A JEFFREY FLUID IN THE PRESENCE OF MAGNETIC FIELD. Heat Transfer Research, 2013, 44, 493-506.	1.6	12
41	MHD micropolar fluid flow with thermal radiation and thermal diffusion in a rotating frame. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 1185-1205.	0.9	12
42	Micropolar Nanofluid Flow Over an Stretching Sheet with Chemical Reaction. International Journal of Applied and Computational Mathematics, 2017, 3, 3229-3239.	1.6	12
43	Cu-water nanofluid flow induced by a vertical stretching sheet in presence of a magnetic field with convective heat transfer. Propulsion and Power Research, 2017, 6, 206-213.	4.3	12
44	Homogeneous–heterogeneous reaction mechanism on MHD carbon nanotube flow over a stretching cylinder with prescribed heat flux using differential transform method. Journal of Computational Design and Engineering, 2020, 7, 337-351.	3.1	11
45	Cu-water nanofluid flow and heat transfer over a shrinking sheet. Journal of Mechanical Science and Technology, 2014, 28, 5089-5094.	1.5	10
46	Framing the features of a Darcy-Forchheimer nanofluid flow past a Riga plate with chemical reaction by HPM. European Physical Journal Plus, 2018, 133, 1.	2.6	10
47	Comparative study on hybrid nanofluid flow of Ag–CuO/H ₂ O over a curved stretching surface with Soret and Dufour effects. Heat Transfer, 2022, 51, 6365-6383.	3.0	9
48	Effects of Magnetic Field on an Unsteady Mixed Convection Flow of Nanofluids Containing Spherical and Cylindrical Nanoparticles. Journal of Heat Transfer, 2016, 138, .	2.1	8
49	Slip effects on nanofluid flow over a nonlinear permeable stretching surface with chemical reaction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 2473-2482.	2.1	8
50	Consequences of nanoparticle diameter and solid–liquid interfacial layer on the SWCNT/EO nanofluid flow over various shaped thin slendering needles. Chinese Journal of Physics, 2018, 56, 2439-2447.	3.9	8
51	Thin film flow over an unsteady stretching sheet with thermocapillarity in presence of magnetic field. Thermal Science, 2017, 21, 2369-2378.	1.1	8
52	Lie Group Transformation for Double-Diffusive Free Convection Nanofluid Flow Over an Inclined Plane. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2019, 89, 387-396.	1.2	7
53	Steady nanofluid flow with variable fluid possessions over a linearly extending surface: A Lie group exploration. AEJ - Alexandria Engineering Journal, 2018, 57, 415-425.	6.4	6
54	Analytical exploration of a TiO2 nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink. European Physical Journal Plus, 2017, 132, 1.	2.6	5

#	Article	lF	CITATIONS
55	Dynamics of nonuniform viscosity of unsteady CuO–H ₂ O nanofluid flow from a spinning body. Heat Transfer - Asian Research, 2019, 48, 2542-2556.	2.8	5
56	Non-Darcy effect on boundary layer flow of TiO2-water/kerosene nanofluid over an extensible sheet. European Physical Journal Plus, 2016, 131, 1.	2.6	4
57	Presence of different shapes of ZrO2 nanoparticles in the melting heat transfer of a Casson flow. European Physical Journal Plus, 2017, 132, 1.	2.6	4
58	Magnetophoretic Effect on the Nanofluid Flow Over Decelerating Spinning Sphere with the Presence of Induced Magnetic Field. Journal of Nanofluids, 2022, 11, 135-141.	2.7	4
59	Nanofluid flow towards a convectively heated stretching surface with heat source/sink: a lie group analysis. Afrika Matematika, 2014, 25, 363-377.	0.8	3
60	Slip flow of hybrid nanofluid in presence of solar radiation. International Journal of Modern Physics C, 2022, 33, .	1.7	3
61	Unsteady nanofluid flow between two spinning expanding disks with continuous vertical motion under the influence of modified Hall effect. Heat Transfer, 2022, 51, 4286-4305.	3.0	3
62	Slip effects on heat transfer and peristaltic pumping of a Johnson–Segalman fluid in an inclined asymmetric channel. Arabian Journal of Mathematics, 2012, 1, 159-174.	0.9	2
63	Electrical magneto hydrodynamic flow of graphene nanoplatelet-platinum/water hybrid nanofluid with entropy generation. International Journal of Ambient Energy, 2022, 43, 6261-6272.	2.5	2
64	Investigation of the effects of different models of nanofluids on their flow and heat transfer characteristics. Journal of the Korean Physical Society, 2015, 67, 1167-1174.	0.7	1
65	Multiple convectionâ€driven Falknerâ€6kan flow of Carreau nanofluid along a permeable wedge: An analytical approach. Heat Transfer - Asian Research, 2019, 48, 914-937	2.8	1
66	Magneto Chemically Reacting Micropolar Nanofluid Flow in Existence of Heat Source/Sink. Journal of Nanofluids, 2022, 11, 528-536.	2.7	1