Sandra R S Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8805145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry, 2016, 2016, 1-16.	1.9	218
2	Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. Journal of Biotechnology, 2013, 164, 423-432.	3.8	191
3	Which is the best food emerging solvent: IL, DES or NADES?. Trends in Food Science and Technology, 2019, 90, 133-146.	15.1	181
4	Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 2012, 88, 544-552.	5.5	179
5	Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. Journal of Food Engineering, 2007, 80, 631-638.	5.2	159
6	Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresource Technology, 2008, 99, 8413-8420.	9.6	156
7	Supercritical fluid extraction of peach (Prunus persica) almond oil: Kinetics, mathematical modeling and scale-up. Journal of Supercritical Fluids, 2009, 51, 10-16.	3.2	137
8	Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: Mathematical modeling and extract composition. Journal of Supercritical Fluids, 2010, 55, 132-141.	3.2	131
9	Chemical composition and antibacterial activity of Cordia verbenacea extracts obtained by different methods. Bioresource Technology, 2009, 100, 6615-6623.	9.6	122
10	Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. Journal of Supercritical Fluids, 2010, 51, 319-324.	3.2	122
11	Supercritical fluid extraction of black pepper (Piper nigrun L.) essential oil. Journal of Supercritical Fluids, 1999, 14, 235-245.	3.2	118
12	Experimental data and modeling the supercritical fluid extraction of marigold (Calendula officinalis) oleoresin. Journal of Supercritical Fluids, 2005, 34, 163-170.	3.2	112
13	Modeling the supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. Journal of Food Engineering, 2002, 54, 263-269.	5.2	106
14	Precipitation of β-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2. Journal of Supercritical Fluids, 2008, 47, 259-269.	3.2	99
15	Supercritical fluid extraction of peach (Prunus persica) almond oil: Process yield and extract composition. Bioresource Technology, 2010, 101, 5622-5632.	9.6	99
16	Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta, 2011, 85, 1383-1391.	5.5	86
17	Composition profile of horsetail (Equisetum giganteum L.) oleoresin: comparing SFE and organic solvents extraction. Journal of Supercritical Fluids, 2005, 33, 131-138.	3.2	82
18	Integrated green-based processes using supercritical CO2 and pressurized ethanol applied to recover antioxidant compouds from cocoa (Theobroma cacao) bean hulls. Journal of Supercritical Fluids, 2018, 135, 52-59.	3.2	76

#	Article	IF	CITATIONS
19	Valorization of passion fruit (Passiflora edulis sp.) by-products: Sustainable recovery and biological activities. Journal of Supercritical Fluids, 2016, 111, 55-62.	3.2	73
20	Supercritical fluid extraction of Agaricus brasiliensis: Antioxidant and antimicrobial activities. Journal of Supercritical Fluids, 2012, 70, 48-56.	3.2	71
21	Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Industrial Crops and Products, 2014, 52, 552-561.	5.2	69
22	NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: In silico and experimental approaches for solvent selection. Journal of Molecular Liquids, 2020, 315, 113761.	4.9	68
23	Pink shrimp (P. brasiliensis and P. paulensis) residue: Supercritical fluid extraction of carotenoid fraction. Journal of Supercritical Fluids, 2013, 74, 22-33.	3.2	66
24	Propolis extracts obtained by low pressure methods and supercritical fluid extraction. Journal of Supercritical Fluids, 2009, 51, 17-23.	3.2	65
25	Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Industrial Crops and Products, 2014, 54, 17-21.	5.2	65
26	Marigold (Calendula officinalis L.) oleoresin: Solubility in SC-CO2 and composition profile. Chemical Engineering and Processing: Process Intensification, 2007, 46, 99-106.	3.6	63
27	Supercritical fluid extraction of shiitake oil: Curve modeling and extract composition. Journal of Food Engineering, 2009, 90, 35-43.	5.2	63
28	Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: Effect of operational conditions on encapsulation efficiency. Journal of Supercritical Fluids, 2012, 66, 342-349.	3.2	63
29	Supercritical fluid extraction from dried banana peel (Musa spp., genomic group AAB): Extraction yield, mathematical modeling, economical analysis and phase equilibria. Journal of Supercritical Fluids, 2010, 54, 30-37.	3.2	61
30	Precipitation and encapsulation of \hat{l}^2 -carotene in PHBV using carbon dioxide as anti-solvent. Journal of Supercritical Fluids, 2010, 54, 103-109.	3.2	59
31	Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101367.	3.1	59
32	Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis. Journal of Biotechnology, 2016, 218, 108-114.	3.8	54
33	Extraction of Mentha spicata L. Volatile Compounds: Evaluation of Process Parameters and Extract Composition. Food and Bioprocess Technology, 2012, 5, 548-559.	4.7	53
34	May the superfruit red guava and its processing waste be a potential ingredient in functional foods?. Food Research International, 2019, 115, 451-459.	6.2	52
35	Valorization of chia (Salvia hispanica) seed cake by means of supercritical fluid extraction. Journal of Supercritical Fluids, 2016, 112, 67-75.	3.2	47
36	Nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. Food and Bioproducts Processing, 2017, 104, 137-146.	3.6	43

#	Article	IF	CITATIONS
37	Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101353.	3.1	43
38	High-pressure phase equilibrium data for systems with carbon dioxide, α-humulene and trans-caryophyllene. Journal of Chemical Thermodynamics, 2009, 41, 130-137.	2.0	42
39	Polygala cyparissias oleoresin: Comparing CO2 and classical organic solvent extractions. Chemical Engineering and Processing: Process Intensification, 2008, 47, 109-117.	3.6	40
40	Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2. Journal of Food Engineering, 2009, 95, 656-663.	5.2	40
41	Enzymatic synthesis of poly(É›-caprolactone) in supercritical carbon dioxide medium by means of a variable-volume view reactor. Journal of Supercritical Fluids, 2013, 79, 133-141.	3.2	40
42	Extraction of umbu (Spondias tuberosa) seed oil using CO2, ultrasound and conventional methods: Evaluations of composition profiles and antioxidant activities. Journal of Supercritical Fluids, 2019, 145, 10-18.	3.2	40
43	Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocolloids, 2020, 108, 106033.	10.7	40
44	Kinetics of the diffusion of sodium chloride in chicken breast (pectoralis major) during curing. Journal of Food Engineering, 2007, 79, 779-785.	5.2	39
45	Phase behavior and process parameters effects on the characteristics of precipitated theophylline using carbon dioxide as antisolvent. Journal of Supercritical Fluids, 2008, 44, 8-20.	3.2	38
46	High pressure carbon dioxide for impregnation of clove essential oil in LLDPE films. Innovative Food Science and Emerging Technologies, 2017, 41, 206-215.	5.6	38
47	Optimization of green PLE method applied for the recovery of antioxidant compounds from buriti (Mauritia flexuosa L.) shell. Food Chemistry, 2019, 298, 125061.	8.2	38
48	Radical-scavenging activity of extracts from Cordia verbenacea DC obtained by different methods. Journal of Supercritical Fluids, 2011, 56, 89-96.	3.2	37
49	Increasing the value of pecan nut [Carya illinoinensis (Wangenh) C. Koch] cake by means of oil extraction and antioxidant activity evaluation. Journal of Supercritical Fluids, 2016, 116, 215-222.	3.2	37
50	Sustainable extraction and encapsulation of pink pepper oil. Journal of Food Engineering, 2017, 204, 38-45.	5.2	37
51	Kappaphycus alvarezii macroalgae: An unexplored and valuable biomass for green biorefinery conversion. Trends in Food Science and Technology, 2020, 103, 214-224.	15.1	37
52	Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. Journal of Food Science and Technology, 2019, 56, 3055-3066.	2.8	36
53	Extraction of essential oil of black pepper with liquid carbon dioxide. Journal of Food Engineering, 1993, 20, 121-133.	5.2	34
54	SFE from Bidens pilosa Linné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. Journal of Supercritical Fluids, 2011, 56, 243-248.	3.2	34

#	Article	IF	CITATIONS
55	Horsetail (Equisetum giganteum L.) oleoresin and supercritical CO2: Experimental solubility and empirical data correlation. Journal of Food Engineering, 2007, 78, 1054-1059.	5.2	33
56	The antitumor activity of extracts from Cordia verbenacea D.C. obtained by supercritical fluid extraction. Journal of Supercritical Fluids, 2012, 61, 101-107.	3.2	33
57	Phase behavior and process parameters effect on grape seed extract encapsulation by SEDS technique. Industrial Crops and Products, 2013, 50, 352-360.	5.2	33
58	Antioxidant and antibacterial potential of butia (Butia catarinensis) seed extracts obtained by supercritical fluid extraction. Journal of Supercritical Fluids, 2017, 119, 229-237.	3.2	33
59	Green-based methods to obtain bioactive extracts from Plantago major and Plantago lanceolata. Journal of Supercritical Fluids, 2017, 119, 211-220.	3.2	32
60	Microwave-assisted extraction of phenolic compounds with antioxidant and anti-proliferative activities from supercritical CO2 pre-extracted mango peel as valorization strategy. LWT - Food Science and Technology, 2021, 137, 110414.	5.2	32
61	Supercritical fluid extracts from tamarillo (Solanum betaceum Sendtn) epicarp and its application as protectors against lipid oxidation of cooked beef meat. Journal of Supercritical Fluids, 2013, 76, 17-23.	3.2	31
62	Biorefinery approach: Is it an upgrade opportunity for peanut by-products?. Trends in Food Science and Technology, 2020, 105, 56-69.	15.1	30
63	High-pressure fluid technologies: Recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends in Food Science and Technology, 2021, 118, 850-869.	15.1	30
64	Economical viability of SFE from peach almond, spearmint and marigold. Journal of Food Engineering, 2011, 103, 473-479.	5.2	29
65	Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. Journal of Supercritical Fluids, 2017, 129, 96-105.	3.2	28
66	Piperine-rich extracts obtained by high pressure methods. Journal of Supercritical Fluids, 2017, 128, 370-377.	3.2	28
67	Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101521.	3.1	28
68	Integrated extraction approach to increase the recovery of antioxidant compounds from Sida rhombifolia leaves. Journal of Supercritical Fluids, 2019, 149, 10-19.	3.2	27
69	Encapsulation of bixin in PHBV using SEDS technique and in vitro release evaluation. Industrial Crops and Products, 2014, 60, 22-29.	5.2	26
70	Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation. Polimeros, 2016, 26, 207-214.	0.7	26
71	Characterization of vegetable fiber and its use in chicken burger formulation. Journal of Food Science and Technology, 2016, 53, 3043-3052.	2.8	26
72	Phase equilibrium measurements of ternary systems formed by linoleic and linolenic acids in carbon dioxide/ethanol mixtures. Journal of Chemical Thermodynamics, 2009, 41, 1254-1258.	2.0	25

#	Article	IF	CITATIONS
73	Phase equilibrium measurements and modelling of ternary system (carbon dioxide+ethanol+palmitic) Tj ETQq1 1	0.784314	l rggT /Overlo
74	Evidence of anti-obesity and mixed hypolipidemic effects of extracts from pink shrimp (Penaeus) Tj ETQq0 0 0 rg 252-261.	BT /Overlo 3.2	ck 10 Tf 50 7 25
75	Supercritical fluid extraction of carqueja (Baccharis trimera) oil: Process parameters and composition profiles. Food and Bioproducts Processing, 2009, 87, 317-326.	3.6	24
76	Antitumor activity of conventional and supercritical extracts from Piper nigrum L. cultivar Bragantina through cell cycle arrest and apoptosis induction. Journal of Supercritical Fluids, 2017, 128, 94-101.	3.2	24
77	Intensified aqueous-based processes to obtain bioactive extracts from Plantago major and Plantago lanceolata. Journal of Supercritical Fluids, 2017, 119, 64-71.	3.2	24
78	Subcritical water extraction and microwave-assisted extraction applied for the recovery of bioactive components from Chaya (Cnidoscolus aconitifolius Mill.). Journal of Supercritical Fluids, 2020, 165, 104976.	3.2	24
79	An eco-friendly pressure liquid extraction method to recover anthocyanins from broken black bean hulls. Innovative Food Science and Emerging Technologies, 2021, 67, 102587.	5.6	24
80	Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends in Food Science and Technology, 2021, 112, 118-136.	15.1	24
81	Phase equilibrium data of guaçatonga (Casearia sylvestris) extract+ethanol+CO2 system and encapsulation using a supercritical anti-solvent process. Journal of Supercritical Fluids, 2014, 93, 103-111.	3.2	23
82	Ultrasound-assisted emulsion of laurel leaves essential oil (Laurus nobilis L.) encapsulated by SFEE. Journal of Supercritical Fluids, 2019, 147, 284-292.	3.2	23
83	Pressurized aqueous solutions of deep eutectic solvent (DES): A green emergent extraction of anthocyanins from a Brazilian berry processing by-product. Food Chemistry: X, 2022, 13, 100236.	4.3	23
84	In vitro release profiles of β-carotene encapsulated in PHBV by means of supercritical carbon dioxide micronization technique. Journal of Supercritical Fluids, 2011, 56, 137-143.	3.2	22
85	Enzymatic synthesis of poly(É>-caprolactone) in liquified petroleum gas and carbon dioxide. Journal of Supercritical Fluids, 2015, 96, 334-348.	3.2	22
86	High-pressure phase equilibrium data for the (carbon dioxide + l -lactide + ethanol) system. Journal of Chemical Thermodynamics, 2015, 86, 37-42.	2.0	20
87	Enzymatic ring opening copolymerization of globalide and ε-caprolactone under supercritical conditions. Journal of Supercritical Fluids, 2017, 128, 404-411.	3.2	20
88	Simulating large scale SFE applied to recover bioactive compounds from papaya seeds. Journal of Supercritical Fluids, 2018, 140, 302-309.	3.2	20
89	Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalide oâ€Îµâ€€aprolactone) Nanoparticles by Thiolâ€Ene Reactions. Macromolecular Bioscience, 2019, 19, e1900145.	4.1	19
90	Sequential green-based extraction processes applied to recover antioxidant extracts from pink pepper fruits. Journal of Supercritical Fluids, 2020, 166, 105034.	3.2	19

#	Article	IF	CITATIONS
91	Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Materials Chemistry and Physics, 2022, 283, 125981.	4.0	19
92	Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatalysis and Agricultural Biotechnology, 2019, 19, 101169.	3.1	18
93	N-acetylcysteine side-chain functionalization of poly(globalide-co-ε-caprolactone) through thiol-ene reaction. Materials Science and Engineering C, 2019, 94, 477-483.	7.3	18
94	Sequential green extractions based on supercritical carbon dioxide and pressurized ethanol for the recovery of lipids and phenolics from Pachira aquatica seeds. Journal of Cleaner Production, 2021, 306, 127223.	9.3	18
95	In vivo antitumor activity of by-products of Passiflora edulis f. flavicarpa Deg. Rich in medium and long chain fatty acids evaluated through oxidative stress markers, cell cycle arrest and apoptosis induction. Food and Chemical Toxicology, 2018, 118, 557-565.	3.6	17
96	Influence of In Vitro Digestion on Antioxidant Activity of Enriched Apple Snacks with Grape Juice. Foods, 2020, 9, 1681.	4.3	17
97	Lipase-catalyzed synthesis of poly(e-caprolactone) in supercritical carbon dioxide. Biocatalysis and Agricultural Biotechnology, 2012, 1, 280-283.	3.1	16
98	Cocrystallization: A tool to modulate physicochemical and biological properties of food-relevant polyphenols. Trends in Food Science and Technology, 2021, 110, 13-27.	15.1	16
99	Ni Y2O3Al2O3 aerogel catalysts with high coke deposition resistance for syngas production by biogas reforming. International Journal of Hydrogen Energy, 2019, 44, 11861-11871.	7.1	15
100	CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract. Food and Chemical Toxicology, 2019, 132, 110644.	3.6	14
101	Continuous enzymatic synthesis of polycaprolactone in packed bed reactor using pressurized fluids. Chemical Engineering Science, 2018, 175, 139-147.	3.8	13
102	Thermomechanical and transport properties of LLDPE films impregnated with clove essential oil by high-pressure CO2. Journal of Supercritical Fluids, 2018, 139, 8-18.	3.2	13
103	Technological properties of natural hog casings treated with surfactant solutions. Journal of Food Engineering, 2008, 89, 17-23.	5.2	12
104	Nanosizing of sodium ibuprofen by SAS method. Powder Technology, 2015, 270, 378-386.	4.2	12
105	Encapsulation of yacon (Smallanthus sonchifolius) leaf extract by supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2020, 160, 104815.	3.2	12
106	Determination of high-pressure phase equilibrium data of systems containing supercritical carbon dioxide and globalide. Journal of Supercritical Fluids, 2020, 166, 104996.	3.2	11
107	Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modification. Polymer Degradation and Stability, 2020, 179, 109287.	5.8	11
108	Study of banana (Musa aaa Cavendish cv Nanica) trigger ripening for small scale process. Brazilian Archives of Biology and Technology, 2008, 51, 1033-1047.	0.5	10

#	Article	IF	CITATIONS
109	Antioxidant and antimicrobial potential of cajazeira leaves (Spondias mombin) extracts. Separation Science and Technology, 2019, 54, 580-590.	2.5	10
110	Scale-up simulation of PLE process applied to recover bio-based materials from Sida rhombifolia leaves. Journal of Supercritical Fluids, 2020, 166, 105033.	3.2	10
111	Formation, stability and antimicrobial activity of laurel leaves essential oil (Laurus nobilis L.) particles in suspension obtained by SFEE. Journal of Supercritical Fluids, 2020, 166, 105032.	3.2	10
112	Co-Precipitation of Beta-Carotene and Bio-Polymer Using Supercritical Carbon Dioxide as Antisolvent. Open Chemical Engineering Journal, 2014, 5, 11-20.	0.5	10
113	Valorization of tamarind seeds using high-pressure extraction methods to obtain rich fractions in fatty acid and phenolic compounds. Journal of Supercritical Fluids, 2022, 183, 105556.	3.2	10
114	Phase behaviour of pseudo-binary systems of pressurized ((propane+l,l-lactide)) at different ethanol to l,l-lactide mole ratios. Journal of Chemical Thermodynamics, 2014, 78, 120-127.	2.0	9
115	Industrial relevance of Tamarindus indica L. by-products as source of valuable active metabolites. Innovative Food Science and Emerging Technologies, 2020, 66, 102518.	5.6	9
116	ENCAPSULATION OF EXTRACT FROM WINERY INDUSTRY RESIDUE USING THE SUPERCRITICAL ANTI-SOLVENT TECHNIQUE. Brazilian Journal of Chemical Engineering, 2016, 33, 589-598.	1.3	8
117	Starch-Based Aerogels Obtained via Solvent-Induced Gelation. Gels, 2020, 6, 32.	4.5	8
118	Encapsulation of pink pepper extract by SEDS technique: Phase behavior data and process parameters. Journal of Supercritical Fluids, 2020, 161, 104822.	3.2	8
119	Protein valorization from ora-pro-nobis leaves by compressed fluids biorefinery extractions. Innovative Food Science and Emerging Technologies, 2022, 76, 102926.	5.6	8
120	Optimization of the chicken breast cooking process. Journal of Food Engineering, 2008, 84, 576-581.	5.2	7
121	Production of quercetin-nicotinamide cocrystals by gas antisolvent (GAS) process. Journal of Supercritical Fluids, 2022, 188, 105670.	3.2	7
122	CFD-based modeling of precipitation by supercritical anti-solvent process of microparticles from grape pomace extract with population balance approach. Journal of Supercritical Fluids, 2018, 133, 519-527.	3.2	6
123	Photostability and characterization of spray-dried maltodextrin powders loaded with Sida rhombifolia extract. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101716.	3.1	6
124	A comparative study of phenolic compounds profile and in vitro antioxidant activity from buriti (Mauritia flexuosa) by-products extracts. LWT - Food Science and Technology, 2021, 150, 111941.	5.2	6
125	Non-conventional nuts: An overview of reported composition and bioactivity and new approaches for its consumption and valorization of co-products. Future Foods, 2021, 4, 100099.	5.4	6
126	Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents. Food Reviews International, 2023, 39, 5021-5047.	8.4	6

#	Article	IF	CITATIONS
127	Green processes in Foodomics. Supercritical Fluid Extraction of Bioactives. , 2021, , 725-743.		5
128	High-pressure biorefining of ora-pro-nobis (Pereskia aculeata). Journal of Supercritical Fluids, 2022, 181, 105514.	3.2	5
129	Comparative larvicidal effect of Pterodon spp. extracts obtained by different extraction methods. Journal of Supercritical Fluids, 2020, 166, 104993.	3.2	4
130	Neuroprotective potential of extracts from leaves of ora-pro-nobis (Pereskia aculeata) recovered by clean compressed fluids. Journal of Supercritical Fluids, 2022, 179, 105390.	3.2	4
131	A nonâ€conventional approach for obtaining phenolic antioxidants from red guava (<i>Psidium) Tj ETQq1 1 0.78</i>	4314 rgB ⁻ 2.0	Г /Qverlock 1
132	Bioactive compounds from Pleurotus sajor-caju mushroom recovered by sustainable high-pressure methods. LWT - Food Science and Technology, 2022, 160, 113316.	5.2	4
133	Green-based processes applied for valorization of peanut by-product: In vitro evaluation of antioxidant and enzymatic inhibition capacities. Journal of Supercritical Fluids, 2022, 186, 105602.	3.2	4
134	Modeling Oil Extraction from Green and Roasted Coffee by Means of Supercritical CO2. International Journal of Food Engineering, 2012, 8, .	1.5	3
135	Low Order-Value Multiple Fitting for supercritical fluid extraction models. Computers and Chemical Engineering, 2012, 40, 148-156.	3.8	3
136	Micronization processes by supercritical fluid technologies: a short review on process design (2008-2012) - doi: 10.4025/actascitechnol.v35i4.18819. Acta Scientiarum - Technology, 2013, 35, .	0.4	3
137	Antioxidant Potential of Extracts from Processing Residues from Brazilian Food Industries. Food and Nutrition Sciences (Print), 2013, 04, 211-218.	0.4	3
138	Phenolic compounds recovered from ora-pro-nobis leaves by microwave assisted extraction. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102238.	3.1	3
139	Supercritical fluid extraction of lipids, carotenoids, and other compounds from marine sources. , 2022, , 277-317.		1
140	Chemical profile, antimicrobial potential, and antiaggregant activity of supercritical fluid extract from Agaricus bisporus. Chemical Papers, 0, , .	2.2	1
141	Title is missing!. Journal of Supercritical Fluids, 2005, 34, 107.	3.2	0