
Dieter Jendrossek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8804152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Migration of Polyphosphate Granules in <i>Agrobacterium tumefaciens</i> . Microbial Physiology, 2022, 32, 71-82.	2.4	3
2	The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiology Reviews, 2021, 45, .	8.6	50
3	The Multiple Roles of Polyphosphate in <i>Ralstonia eutropha</i> and Other Bacteria. Microbial Physiology, 2021, 31, 163-177.	2.4	9
4	Characterization of Agrobacterium tumefaciens PPKs reveals the formation of oligophosphorylated products up to nucleoside nona-phosphates. Applied Microbiology and Biotechnology, 2020, 104, 9683-9692.	3.6	10
5	Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 2020, 15, e0230443.	2.5	67
6	A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate. Applied Microbiology and Biotechnology, 2020, 104, 6659-6667.	3.6	10
7	Acidocalcisomes and Polyphosphate Granules Are Different Subcellular Structures in Agrobacterium tumefaciens. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
8	Carbonosomes. Microbiology Monographs, 2020, , 243-275.	0.6	4
9	Polyphosphate Granules and Acidocalcisomes. Microbiology Monographs, 2020, , 1-17.	0.6	2
10	Solimonas fluminis has an active latex-clearing protein. Applied Microbiology and Biotechnology, 2019, 103, 8229-8239.	3.6	6
11	Formation of an Organic–Inorganic Biopolymer: Polyhydroxybutyrate–Polyphosphate. Biomacromolecules, 2019, 20, 3253-3260.	5.4	11
12	Rubber oxygenases. Applied Microbiology and Biotechnology, 2019, 103, 125-142.	3.6	38
13	Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase RoxA. AMB Express, 2019, 9, 166.	3.0	3
14	Poly(3-Hydroxybutyrate) (PHB) Polymerase PhaC1 and PHB Depolymerase PhaZa1 of Ralstonia eutropha Are Phosphorylated <i>In Vivo</i> . Applied and Environmental Microbiology, 2018, 84, .	3.1	13
15	Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass. Applied Microbiology and Biotechnology, 2018, 102, 2693-2707.	3.6	19
16	Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation. Applied Microbiology and Biotechnology, 2018, 102, 10245-10257.	3.6	21
17	Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS ONE, 2018, 13, e0197448.	2.5	26
18	Determination of Polyhydroxybutyrate (PHB) Content in Ralstonia eutropha Using Gas Chromatography and Nile Red Staining. Bio-protocol, 2018, 8, e2748.	0.4	47

#	Article	IF	CITATIONS
19	Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules <i>In Vivo</i> and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins). Applied and Environmental Microbiology, 2017, 83, .	3.1	24
20	New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
21	RoxB Is a Novel Type of Rubber Oxygenase That Combines Properties of Rubber Oxygenase RoxA and Latex Clearing Protein (Lcp). Applied and Environmental Microbiology, 2017, 83, .	3.1	35
22	Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2017, 83, .	3.1	33
23	Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1351-1361.	2.6	7
24	Structural and Functional Analysis of Latex Clearing Protein (Lcp) Provides Insight into the Enzymatic Cleavage of Rubber. Scientific Reports, 2017, 7, 6179.	3.3	29
25	Production of functionalized oligoâ€isoprenoids by enzymatic cleavage of rubber. Microbial Biotechnology, 2017, 10, 1426-1433.	4.2	22
26	Assays for the Detection of Rubber Oxygenase Activities. Bio-protocol, 2017, 7, e2188.	0.4	11
27	Cleavage of Rubber by the Latex Clearing Protein (Lcp) of Streptomyces sp. Strain K30: Molecular Insights. Applied and Environmental Microbiology, 2016, 82, 6593-6602.	3.1	32
28	Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program. Current Biology, 2016, 26, 2862-2872.	3.9	149
29	Low temperature-induced viable but not culturable state of <i>Ralstonia eutropha</i> and its relationship to accumulated polyhydroxybutyrate. FEMS Microbiology Letters, 2016, 363, fnw249.	1.8	14
30	Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids. Scientific Reports, 2016, 6, 26612.	3.3	81
31	Biochemical and spectroscopic characterization of purified Latex Clearing Protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiology, 2016, 16, 92.	3.3	48
32	Latex Clearing Protein (Lcp) of Streptomyces sp. Strain K30 Is a <i>b</i> -Type Cytochrome and Differs from Rubber Oxygenase A (RoxA) in Its Biophysical Properties. Applied and Environmental Microbiology, 2015, 81, 3793-3799.	3.1	45
33	Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2015, 81, 1847-1858.	3.1	48
34	The Pseudomonas aeruginosa Isohexenyl Glutaconyl Coenzyme A Hydratase (AtuE) Is Upregulated in Citronellate-Grown Cells and Belongs to the Crotonase Family. Applied and Environmental Microbiology, 2015, 81, 6558-6566.	3.1	8
35	Formation of Polyphosphate by Polyphosphate Kinases and Its Relationship to Poly(3-Hydroxybutyrate) Accumulation in Ralstonia eutropha Strain H16. Applied and Environmental Microbiology, 2015, 81, 8277-8293.	3.1	24
36	PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha. Applied and Environmental Microbiology, 2014, 80, 555-563.	3.1	54

#	Article	IF	CITATIONS
37	New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3â€hydroxybutyrate). Environmental Microbiology, 2014, 16, 2357-2373.	3.8	197
38	Rubber Oxygenase and Latex Clearing Protein Cleave Rubber to Different Products and Use Different Cleavage Mechanisms. Applied and Environmental Microbiology, 2014, 80, 5012-5020.	3.1	46
39	To Be or Not To Be a Poly(3-Hydroxybutyrate) (PHB) Depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, Highly Active PHB Depolymerases with No Detectable Role in Mobilization of Accumulated PHB. Applied and Environmental Microbiology, 2014, 80, 4936-4946.	3.1	20
40	Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Applied Microbiology and Biotechnology, 2013, 97, 1571-1580.	3.6	23
41	Functional Identification of Rubber Oxygenase (RoxA) in Soil and Marine Myxobacteria. Applied and Environmental Microbiology, 2013, 79, 6391-6399.	3.1	34
42	Biochemical analysis and structure determination of <i><scp>P</scp>aucimonas lemoignei</i> poly(3â€hydroxybutyrate) (<scp>PHB</scp>) depolymerase <scp>PhaZ</scp> 7 muteins reveal the <scp>PHB</scp> binding site and details of substrate–enzyme interactions. Molecular Microbiology, 2013, 90, 649-664.	2.5	24
43	Polyester Modification of the Mammalian TRPM8 Channel Protein: Implications for Structure and Function. Cell Reports, 2013, 4, 302-315.	6.4	48
44	Development of a Transferable Bimolecular Fluorescence Complementation System for the Investigation of Interactions between Poly(3-Hydroxybutyrate) Granule-Associated Proteins in Gram-Negative Bacteria. Applied and Environmental Microbiology, 2013, 79, 2989-2999.	3.1	9
45	Structure of the processive rubber oxygenase RoxA from <i>Xanthomonas</i> sp. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13833-13838.	7.1	41
46	Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins during PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. Journal of Bacteriology, 2012, 194, 5909-5921.	2.2	77
47	Phe317 Is Essential for Rubber Oxygenase RoxA Activity. Applied and Environmental Microbiology, 2012, 78, 7876-7883.	3.1	25
48	Activation-Independent Cyclization of Monoterpenoids. Applied and Environmental Microbiology, 2012, 78, 1055-1062.	3.1	43
49	PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiology, 2012, 12, 262.	3.3	67
50	Substrate specificity of a novel squalene-hopene cyclase from Zymomonas mobilis. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 72-77.	1.8	28
51	Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules. Applied Microbiology and Biotechnology, 2011, 89, 1487-1495.	3.6	16
52	Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Molecular Microbiology, 2011, 82, 936-951.	2.5	81
53	Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology (United Kingdom), 2011, 157, 2795-2807.	1.8	61
54	Squalene-Hopene Cyclases. Applied and Environmental Microbiology, 2011, 77, 3905-3915.	3.1	118

#	Article	IF	CITATIONS
55	Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Applied Microbiology and Biotechnology, 2010, 87, 859-869.	3.6	32
56	Tyrosine 105 of Paucimonas lemoignei PHB depolymerase PhaZ7 is essential for polymer binding. Polymer Degradation and Stability, 2010, 95, 1429-1435.	5.8	9
57	PQQâ€Dependent Alcohol Dehydrogenase (QEDH) of <i>Pseudomonas aeruginosa</i> is involved in catabolism of acyclic terpenes. Journal of Basic Microbiology, 2010, 50, 119-124.	3.3	17
58	The structure of PhaZ7 at atomic (1.2â€Ã) resolution reveals details of the active site and suggests a substrate-binding mode. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 648-654.	0.7	13
59	AtuR is a repressor of acyclic terpene utilization (Atu) gene cluster expression and specifically binds to two 13â€∫bp inverted repeat sequences of â€∫the atuA-atuRâ€∫intergenic region. FEMS Microbiology Letters, 2010, 308, no-no.	1.8	16
60	Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase. Microbiology (United Kingdom), 2010, 156, 2537-2548.	1.8	35
61	Polyhydroxyalkanoate Granules Are Complex Subcellular Organelles (Carbonosomes). Journal of Bacteriology, 2009, 191, 3195-3202.	2.2	260
62	Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of <i>Pseudomonas aeruginosa</i> and the importance of <i>liu</i> genes for a functional catabolic pathway of methyl-branched compounds. FEMS Microbiology Letters, 2008, 286, 78-84.	1.8	22
63	Structural Basis of Poly(3-Hydroxybutyrate) Hydrolysis by PhaZ7 Depolymerase from Paucimonas lemoignei. Journal of Molecular Biology, 2008, 382, 1184-1194.	4.2	39
64	Poly(3-Hydroxybutyrate) (PHB) Depolymerase PhaZa1 Is Involved in Mobilization of Accumulated PHB in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2008, 74, 1058-1063.	3.1	53
65	Biochemical characterization of AtuD from Pseudomonas aeruginosa, the first member of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA. Microbiology (United) Tj ETQq1 1 0.784.	31 .4 rgBT /	@verlock 1(
66	Poly(3-Hydroxybutyrate) Granules at the Early Stages of Formation Are Localized Close to the Cytoplasmic Membrane in Caryophanon latum. Applied and Environmental Microbiology, 2007, 73, 586-593.	3.1	81
67	Isolated Poly(3-Hydroxybutyrate) (PHB) Granules Are Complex Bacterial Organelles Catalyzing Formation of PHB from Acetyl Coenzyme A (CoA) and Degradation of PHB to Acetyl-CoA. Journal of Bacteriology, 2007, 189, 8250-8256.	2.2	107
68	Microscopical investigation of poly(3-hydroxybutyrate) granule formation inAzotobacter vinelandii. FEMS Microbiology Letters, 2007, 266, 60-64.	1.8	21
69	Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Applied Microbiology and Biotechnology, 2007, 74, 1186-1196.	3.6	66
70	Production of medium-chain-length hydroxyalkanoic acids from Pseudomonas putida in pH stat. Applied Microbiology and Biotechnology, 2007, 75, 1047-1053.	3.6	12
71	Identification and characterization of the acyclic terpene utilization gene cluster ofPseudomonas citronellolis. FEMS Microbiology Letters, 2006, 264, 220-225.	1.8	26
72	Assay of Poly(3-Hydroxybutyrate) Depolymerase Activity and Product Determination. Applied and Environmental Microbiology, 2006, 72, 6094-6100.	3.1	58

#	Article	IF	CITATIONS
73	Identification of Genes and Proteins Necessary for Catabolism of Acyclic Terpenes and Leucine/Isovalerate in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2006, 72, 4819-4828.	3.1	62
74	Malate:quinone oxidoreductase (MqoB) is required for growth on acetate and linear terpenes inPseudomonas citronellolis. FEMS Microbiology Letters, 2005, 246, 25-31.	1.8	15
75	Crystallization and preliminary X-ray analysis of a novel thermoalkalophilic poly(3-hydroxybutyrate) depolymerase (PhaZ7) fromPaucimonas lemoignei. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 479-481.	0.7	6
76	Heme-Dependent Rubber Oxygenase RoxA of Xanthomonas sp. Cleaves the Carbon Backbone of Poly(cis) Tj ETQ	9q030 o rgE	BT /Overlock
77	The Presumptive Magnetosome Protein Mms16 Is a Poly(3-Hydroxybutyrate) Granule-Bound Protein (Phasin) in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 2005, 187, 2416-2425.	2.2	64
78	Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology (United Kingdom), 2005, 151, 2277-2283.	1.8	26
79	Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2005, 151, 3649-3656.	1.8	50
80	Fluorescence Microscopical Investigation of Poly(3-hydroxybutyrate) Granule Formation in Bacteriaâ€. Biomacromolecules, 2005, 6, 598-603.	5.4	48
81	Novel Type of Heme-Dependent Oxygenase Catalyzes Oxidative Cleavage of Rubber (Poly- cis) Tj ETQq1 1 0.784	814.rgBT /(Overlock 10
82	The "Intracellular―Poly(3-Hydroxybutyrate) (PHB) Depolymerase of Rhodospirillum rubrum Is a Periplasm-Located Protein with Specificity for Native PHB and with Structural Similarity to Extracellular PHB Depolymerases. Journal of Bacteriology, 2004, 186, 7243-7253.	2.2	66
83	Unraveling the Function of the Rhodospirillum rubrum Activator of Polyhydroxybutyrate (PHB) Degradation: the Activator Is a PHB-Granule-Bound Protein (Phasin). Journal of Bacteriology, 2004, 186, 2466-2475.	2.2	77
84	Thermotolerant poly(3-hydroxybutyrate)-degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Archives of Microbiology, 2004, 182, 157-64.	2.2	47
85	Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Archives of Microbiology, 2004, 182, 212-25.	2.2	81
86	The activator of theRhodospirillum rubrumPHB depolymerase is a polypeptide that is extremely resistant to high temperature (121Ã,°C) and other physical or chemical stresses. FEMS Microbiology Letters, 2004, 230, 265-274.	1.8	29
87	Sequence analysis of a gene product synthesized byXanthomonassp. during growth on natural rubber latex. FEMS Microbiology Letters, 2003, 224, 61-65.	1.8	54
88	Identification and characterisation of the catalytic triad of the alkaliphilic thermotolerant PHA depolymerase PhaZ7 ofPaucimonas lemoignei. FEMS Microbiology Letters, 2003, 224, 107-112.	1.8	33
89	Microbial Degradation of Polyhydroxyalkanoates. Annual Review of Microbiology, 2002, 56, 403-432.	7.3	572
90	Production of PHA depolymerase A (PhaZ5) fromPaucimonas lemoigneiinBacillus subtilis. FEMS Microbiology Letters, 2002, 209, 237-241.	1.8	19

#	Article	IF	CITATIONS
91	Bacterial Degradation of Natural and Synthetic Rubber. Biomacromolecules, 2001, 2, 295-303.	5.4	149
92	A New Type of Thermoalkalophilic Hydrolase of Paucimonas lemoignei with High Specificity for Amorphous Polyesters of Short Chain-length Hydroxyalkanoic Acids. Journal of Biological Chemistry, 2001, 276, 36215-36224.	3.4	121
93	Mobilization of Poly(3-Hydroxybutyrate) in <i>Ralstonia eutropha</i> . Journal of Bacteriology, 2000, 182, 5916-5918.	2.2	119
94	Physiological and Chemical Investigations into Microbial Degradation of Synthetic Poly(cis) Tj ETQq0 0 0 rgBT /O	verlock 1(3.1) Tf 50 622 T 78
95	Poly(3-Hydroxyvalerate) Depolymerase of Pseudomonas lemoignei. Applied and Environmental Microbiology, 2000, 66, 1385-1392.	3.1	47
96	Microbial degradation of polyesters: a review on extracellular poly(hydroxyalkanoic acid) depolymerases. Polymer Degradation and Stability, 1998, 59, 317-325.	5.8	82
97	Taxonomic identification ofStreptomyces exfoliatusK10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiology Letters, 1996, 142, 215-221.	1.8	77
98	Poly(3-hydroxybutyrate) depolymerases bind to their substrate by a C-terminal located substrate binding site. FEMS Microbiology Letters, 1996, 143, 191-194.	1.8	59
99	Enzymatic Degradation of Bacterial Poly(3-hydroxybutyrate) by a Depolymerase from Pseudomonas lemoignei. Macromolecules, 1996, 29, 507-513.	4.8	113
100	Substrate specificities of poly(hydroxyalkanoate)-degrading bacteria and active site studies on the extracellular poly(3-hydroxyoctanoic acid) depolymerase of Pseudomonas fluorescens GK13. Canadian Journal of Microbiology, 1995, 41, 170-179.	1.7	56
101	Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by aerobic sewage sludge. FEMS Microbiology Letters, 1994, 117, 107-111.	1.8	78
102	Purification and properties of poly(3-hydroxyvaleric acid) depolymerase from Pseudomonas lemoignei. Applied Microbiology and Biotechnology, 1993, 38, 487.	3.6	72
103	Cloning and characterization of the poly(hydroxyalkanoic acid)-depolymerase gene locus, phaZ1, of Pseudomonas lemoignei and its gene product. FEBS Journal, 1993, 218, 701-710.	0.2	84
104	Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase fromComamonas sp Journal of Polymers and the Environment, 1993, 1, 53-63.	0.6	166
105	Three different proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity from Alcaligenes eutrophus. FEBS Journal, 1987, 167, 541-548.	0.2	33