
Nicola Nedev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8804139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inner diameter measurement of aligned \$\$hbox {TiO}_2\$\$ nanotubes by computational image analysis. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	0
2	HfO2:Y2O3 ultrathin nanolaminate structures grown by ALD: Bilayer thickness and annealing temperature effects on optical properties. Ceramics International, 2022, 48, 17564-17575.	4.8	1
3	Bias-stress instabilities in low-temperature thin-film transistors made of Al2O3 and ZnO films deposited by PEALD. Microelectronic Engineering, 2022, , 111788.	2.4	2
4	Ultrahigh purity beta gallium oxide microstructures. Ceramics International, 2022, 48, 25322-25325.	4.8	5
5	Electric discharge synthesis of nickel nanoparticles with virtual instrument control. Instrumentation Science and Technology, 2021, 49, 499-508.	1.8	3
6	Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants. Journal of Materials Science: Materials in Electronics, 2021, 32, 20274-20283.	2.2	5
7	Effect of oxidation temperature on the properties of NiOx layers for application in optical sensors. Thin Solid Films, 2021, 734, 138849.	1.8	3
8	Properties of Al2O3 Thin Films Grown by PE-ALD at Low Temperature Using H2O and O2 Plasma Oxidants. Coatings, 2021, 11, 1266.	2.6	8
9	Machine learning for predicting the average length of vertically aligned TiO2 nanotubes. AIP Advances, 2020, 10, 075116.	1.3	1
10	Selective photosensitivity of metal–oxide–semiconductor structures with SiOx layer annealed at high temperature. Journal of Materials Science: Materials in Electronics, 2020, 31, 17412-17421.	2.2	3
11	DEVELOPMENT OF A MULTILAYER COMPOSITE MATERIAL USING GRAPHENE OXIDE-COATED MILLED GLASS FIBER AS A MATRIX REINFORCEMENT AGENT. Composites: Mechanics, Computations, Applications, 2020, 11, 227-238.	0.3	0
12	UV Sensitivity of MOS Structures with Silicon Nanoclusters. Sensors, 2019, 19, 2277.	3.8	7
13	Phase characterization and ethanol adsorption in TiO2 nanotubes anodically grown on Ti6Al4V alloy substrates. Journal of Alloys and Compounds, 2019, 798, 394-402.	5.5	5
14	Synthesis of high purity nickel oxide by a modified sol-gel method. Ceramics International, 2019, 45, 11403-11407.	4.8	27
15	Synthesis, Characterization, and In Situ Antifungal and Cytotoxicity Evaluation of Ascorbic Acid-Capped Copper Nanoparticles. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	18
16	Data mining to predict the average outer diameter of vertically aligned TiO2 nanotubes. Computational Materials Science, 2019, 162, 82-87.	3.0	1
17	Investigation of resistive switching in SiO2 layers with Si nanocrystals. Journal of Physics: Conference Series, 2019, 1186, 012022.	0.4	2
18	Controlled antifungal behavior on Ti6Al4V nanostructured by chemical nanopatterning. Materials Science and Engineering C, 2019, 96, 677-683.	7.3	17

#	Article	IF	CITATIONS
19	Structural, Optical, and Electrical Characterization of <i>β</i> -Ga ₂ O ₃ Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy Suitable for UV Sensing. Advances in Materials Science and Engineering, 2018, 2018, 1-6.	1.8	18
20	Gold, copper and gold/copper bimetallic nanoparticles obtained by focused ion beam sputter deposition and rapid thermal annealing. Vacuum, 2018, 157, 166-172.	3.5	10
21	Resistive switching behavior of SiOxlayers with Si nanoparticles. Journal of Physics: Conference Series, 2017, 794, 012018.	0.4	0
22	Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds. Materials Science and Engineering C, 2017, 76, 59-65.	7.3	37
23	Thin SiO 2 /a-Si:H/SiO 2 multilayer insulators obtained by electron cyclotron resonance chemical vapor deposition at room temperature for possible application in non-volatile memories. Thin Solid Films, 2017, 628, 96-100.	1.8	2
24	Al2O3-Y2O3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications. Optical Materials, 2017, 72, 788-794.	3.6	13
25	Structural and electrical characterization of multilayer Al2O3/ZnO nanolaminates grown by atomic layer deposition. Materials Science in Semiconductor Processing, 2017, 71, 290-295.	4.0	14
26	Influence of the bilayer thickness on the optical properties of Al 2 O 3 -Y 2 O 3 dielectric nanolaminate films grown by thermal atomic layer deposition. Materials Research Bulletin, 2017, 87, 14-19.	5.2	6
27	Refractive index and bandgap variation in Al2O3-ZnO ultrathin multilayers prepared by atomic layer deposition. Journal of Alloys and Compounds, 2017, 691, 308-315.	5.5	32
28	Synthesis of Carbon Nanofibers with Maghemite via a Modified Sol-Gel Technique. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	4
29	Structural and optical properties of β-Ga2O3 thin films grown by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	46
30	Study of SiO\${}_{{{x}}\$ (1 < x lt; 2) Thin-Film Optical Waveguides. Journal of Lightwave Technology, 2016, 34, 4926-4932.	4.6	5
31	High energy electron-beam irradiation effects in Si-SiO _x structures. Journal of Physics: Conference Series, 2016, 682, 012012.	0.4	7
32	Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior. Materials Science and Engineering C, 2016, 60, 239-245.	7.3	19
33	Improved Phosphate Conversion Coating of Steel for Corrosion Protection. Innovations in Corrosion and Materials Science, 2016, 6, 49-54.	0.2	1
34	The Promotion of Antibacterial Effects of Ti6Al4V Alloy Modified with TiO ₂ Nanotubes Using a Superoxidized Solution. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	8
35	Application of Metal-Oxide-Semiconductor structures containing silicon nanocrystals in radiation dosimetry. Open Physics, 2015, 13, .	1.7	8
36	Structural, compositional and electrical characterization of Si-rich SiOx layers suitable for application in light sensors. Materials Science in Semiconductor Processing, 2015, 37, 229-234.	4.0	7

#	Article	IF	CITATIONS
37	UV Dosimeters Based on Metal-Oxide-Semiconductor Structures Containing Si Nanocrystals. Sensor Letters, 2015, 13, 561-564.	0.4	2
38	Application of Metal-Oxide-Semiconductor Structures for Visible and Near UV Light Sensing. Sensor Letters, 2015, 13, 556-560.	0.4	0
39	Visible Light Sensor Based on Metal-Oxide-Semiconductor Structure. Key Engineering Materials, 2014, 605, 384-387.	0.4	1
40	Electrical Characterization of Interface Defects in MOS Structures Containing Silicon Nanoclusters. Advanced Materials Research, 2014, 976, 129-132.	0.3	1
41	Failure analysis method to study solder wicking phenomena in modern microelectronic devices. Journal of Materials Science: Materials in Electronics, 2014, 25, 609-617.	2.2	2
42	Spectroscopic studies of SiO _x films irradiated with high energy electrons. Journal of Physics: Conference Series, 2014, 558, 012045.	0.4	7
43	TEM and Spectroscopic Ellipsometry studies of multilayer gate dielectrics containing crystalline and amorphous Si nanoclusters. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 51, 111-114.	2.7	4
44	Metal-Oxide-Semiconductor Structures Containing Silicon Nanocrystals for Application in Radiation Dosimeters. Sensor Letters, 2012, 10, 833-837.	0.4	10
45	Electrical characterization of MOS structures with self-organized three-layer gate dielectric containing Si nanocrystals. Journal of Physics: Conference Series, 2010, 253, 012034.	0.4	0
46	Effect of oxygen to argon ratio on the properties of thin SiO x films deposited by r.f. sputtering. Journal of Materials Science: Materials in Electronics, 2010, 21, 481-485.	2.2	6
47	Microstructural characterization of thin SiOx films obtained by physical vapor deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 132-136.	3.5	21
48	Formation of Si Nanocrystals in Thin SiO ₂ Films for Memory Device Applications. Materials Science Forum, 2010, 644, 101-104.	0.3	7
49	Comparative Study of SiNx and BNx Nanolayers Prepared by Different Chemical Vapor Deposition Methods. ECS Transactions, 2009, 25, 845-851.	0.5	0
50	Memory effect in MOS structures containing amorphous or crystalline silicon nanoparticles. , 2008, ,		3
51	Effect of Thermal Annealing on the Electrical Properties of Thin ZrO2 Layers. ECS Transactions, 2008, 13, 179-185.	O.5	1
52	Absorption and transport properties of Si rich oxide layers annealed at various temperatures. Semiconductor Science and Technology, 2008, 23, 045015.	2.0	21
53	MOS structures containing silicon nanoparticles for memory device applications. Journal of Physics: Conference Series, 2008, 113, 012034.	0.4	8
54	Memory effect in MIS structures with amorphous silicon nanoparticles embedded in ultra thin matrix. Journal of Physics and Chemistry of Solids, 2007, 68, 725-728.	4.0	20

#	Article	IF	CITATIONS
55	Influence of the Rapid Thermal Annealing on the Properties of Thin a-Si Films. Materials Science Forum, 2004, 455-456, 108-111.	0.3	0
56	Sputtering Preparation of Silicon Nitride Thin Films for Gate Dielectric Applications. Materials Science Forum, 2004, 455-456, 69-72.	0.3	0
57	Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 89-93.	3.5	36
58	Characterization of silicon carbide thin films prepared by VHF-PECVD technology. Journal of Non-Crystalline Solids, 2004, 338-340, 530-533.	3.1	20
59	Sensitivity of the a-Si:H/c-Si structure to alcohol vapors. Sensors and Actuators B: Chemical, 2002, 82, 180-185.	7.8	1
60	IR and Raman absorption spectroscopic studies of APCVD, LPCVD and PECVD thin SiN films. Vacuum, 2002, 69, 301-305.	3.5	44
61	Carrier transport in a position sensitive detector based on an ITO/a-Si:H/Pd structure. Sensors and Actuators A: Physical, 2001, 93, 48-51.	4.1	12
62	A neutron detector based on an ITO/p-Si structure. Vacuum, 2000, 58, 308-314.	3.5	8
63	Modelling the operation of an a-Si:H based position sensitive detector. Journal of Physics Condensed Matter, 1998, 10, 5515-5524.	1.8	2
64	A position sensitive detector based on an ITO - Si structure. Journal of Physics Condensed Matter, 1997, 9, 4995-5001.	1.8	10
65	AC EL STRUCTURES RED LIGHT EMISSION AND THEIR OPTOGALVANIC ANALOGUE. Spectroscopy Letters, 1997, 30, 1155-1163.	1.0	3
66	The permittivity in a magnetic field of thin SiOx layers containing Fe and Ni. Vacuum, 1996, 47, 1105-1106.	3.5	0
67	Two-dimensional modelling of a lateral magnetotransistor. Sensors and Actuators A: Physical, 1994, 45, 195-201.	4.1	0
68	Investigation of the magnetosensitivity of a dual-emitter dual-base structure in oscillator mode of operation. Sensors and Actuators A: Physical, 1993, 39, 19-23.	4.1	0
69	Lateral magnetotransistor with enhanced emitter injection modulation. Sensors and Actuators A: Physical, 1992, 35, 113-119.	4.1	2
70	The effect of molecular structure on intramolecular anharmonic vibrational mixing and IVR. Journal of Molecular Structure, 1992, 266, 247-254.	3.6	2
71	Three-dimensional modelling of galvanomagnetic effects in lateral magnetotransistor structure. Sensors and Actuators A: Physical, 1992, 30, 105-107.	4.1	4
72	Radiation dosimeter based on floating gate MOS transistor. Radiation Effects and Defects in Solids, 1991, 116, 155-158.	1.2	28

#	Article	IF	CITATIONS
73	A magnetosensitive dual-emitter dual-base transistor. Sensors and Actuators A: Physical, 1990, 24, 197-202.	4.1	5
74	The Influence of Defect Surface Layers on the Capacitive Properties of MOS Structures. Physica Status Solidi A, 1983, 77, 699-707.	1.7	6
75	Influence of Thermal Annealing on the Properties of Sputtered Si Rich Silicon Oxide Films. Solid State Phenomena, 0, 159, 101-104.	0.3	0
76	Radiation Dosimeter Based on Metal-Oxide-Semiconductor Structures Containing Silicon Nanocrystals. Key Engineering Materials, 0, 495, 120-123.	0.4	5
77	Electrical Characterization of MOS Structures with Silicon Nanocrystals Suitable for X-Ray Detection. Key Engineering Materials, 0, 543, 150-153.	0.4	0
78	MOS Structures Containing Si Nanocrystals for Applications in UV Dosimeters. Key Engineering Materials, 0, 605, 380-383.	0.4	1