
Ängel Alfonso Cruz-Roa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8803600/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. Scientific Reports, 2017, 7, 46450.	3.3	360
2	Assessment of algorithms for mitosis detection in breast cancer histopathology images. Medical Image Analysis, 2015, 20, 237-248.	11.6	338
3	Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. Journal of Medical Imaging, 2014, 1, 034003.	1.5	264
4	Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Proceedings of SPIE, 2014, , .	0.8	224
5	A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection. Lecture Notes in Computer Science, 2013, 16, 403-410.	1.3	209
6	Visual pattern mining in histology image collections using bag of features. Artificial Intelligence in Medicine, 2011, 52, 91-106.	6.5	104
7	High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection. PLoS ONE, 2018, 13, e0196828.	2.5	100
8	An unsupervised feature learning framework for basal cell carcinoma image analysis. Artificial Intelligence in Medicine, 2015, 64, 131-145.	6.5	80
9	Representación de imágenes de histopatologÃa utilizada en tareas de análisis automático: estado del arte. Revista Med, 2014, 22, 79.	0.1	32
10	Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection. Proceedings of SPIE, 2014, , .	0.8	31
11	Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. Journal of Pathology Informatics, 2012, 2, 4.	1.7	24
12	A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning. Proceedings of SPIE, 2015, , .	0.8	20
13	A Visual Latent Semantic Approach for Automatic Analysis and Interpretation of Anaplastic Medulloblastoma Virtual Slides. Lecture Notes in Computer Science, 2012, 15, 157-164.	1.3	14
14	Combining Unsupervised Feature Learning and Riesz Wavelets for Histopathology Image Representation: Application to Identifying Anaplastic Medulloblastoma. Lecture Notes in Computer Science, 2015, , 581-588.	1.3	12
15	Improving the BoVW via discriminative visual n-grams and MKL strategies. Neurocomputing, 2016, 175, 768-781.	5.9	11
16	BIGS: A framework for large-scale image processing and analysis over distributed and heterogeneous computing resources. , 2012, , .		7
17	Hybrid image representation learning model with invariant features for basal cell carcinoma detection. , 2013, , .		7
18	A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation. , 2015, , .		7

#	Article	IF	CITATIONS
19	Bag-of-visual-ngrams for histopathology image classification. , 2013, , .		6
20	A note on the stability and discriminability of graph-based features for classification problems in digital pathology. , 2015, , .		5
21	Automatic detection of wheezes by evaluation of multiple acoustic feature extraction methods and C-weighted SVM. , 2015, , .		4
22	Visual Pattern Analysis in Histopathology Images Using Bag of Features. Lecture Notes in Computer Science, 2009, , 521-528.	1.3	3
23	A framework for high performance image analysis pipelines. , 2012, , .		2
24	A Digital Pathology application for whole-slide histopathology image analysis based on genetic algorithm and Convolutional Networks. , 2016, , .		2
25	Identifying histological concepts on basal cell carcinoma images using nuclei based sampling and multi-scale descriptors. , 2015, , .		1
26	High Throughput Location Proteomics in Confocal Images from the Human Protein Atlas Using a Bag-of-Features Representation. Advances in Intelligent Systems and Computing, 2014, , 77-82.	0.6	1
27	A framework for semantic analysis of histopathological images using nonnegative matrix factorization. , 2011, , .		0
28	Automatic Classification of Optical Defects ofÂMirrors from Ronchigram Images Using Bag of Visual Words and Support Vector Machines. Lecture Notes in Computer Science, 2018, , 719-726.	1.3	0
29	Classification of Low-Level Atmospheric Structures Based on a Pyramid Representation and a Machine Learning Method. Lecture Notes in Computer Science, 2015, , 19-26.	1.3	0