## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8803327/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Composites Part B: Engineering, 2022, 228, 109435.                                      | 5.9 | 52        |
| 2  | Thermal conductance control of non-bonded interaction between loaded halogen molecules and carbon nanotubes: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2022, 183, 122216.  | 2.5 | 5         |
| 3  | Elaborate manipulation on CNT intertube heat transport by using a polymer knob. International<br>Journal of Heat and Mass Transfer, 2022, 184, 122280.                                                        | 2.5 | 8         |
| 4  | Excellent heat transfer enhancement of CNT-metal interface by loading carbyne and metal nanowire into CNT. International Journal of Heat and Mass Transfer, 2022, 186, 122533.                                | 2.5 | 12        |
| 5  | Amorphous Co(OH) <sub>2</sub> nanocages achieving efficient photo-induced charge transfer for significant SERS activity. Journal of Materials Chemistry C, 2022, 10, 1632-1637.                               | 2.7 | 8         |
| 6  | Nanofilm. , 2022, , 161-204.                                                                                                                                                                                  |     | 0         |
| 7  | Experimental techniques overview. , 2022, , 19-45.                                                                                                                                                            |     | 1         |
| 8  | Thermal transport mechanism for different structure. , 2022, , 47-113.                                                                                                                                        |     | 0         |
| 9  | Microwire, fiber, nanotube, and nanowire. , 2022, , 115-160.                                                                                                                                                  |     | 0         |
| 10 | Nanoporous bulk. , 2022, , 205-245.                                                                                                                                                                           |     | 0         |
| 11 | Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letters, 2022, 120, .                          | 1.5 | 6         |
| 12 | Broad low-frequency phonon resonance for increased across-tube heat transport. Physical Review B, 2022, 105, .                                                                                                | 1.1 | 5         |
| 13 | Evaluation of thermal performance for bionic porous ceramic phase change material using micro-computed tomography and lattice Boltzmann method. International Journal of Thermal Sciences, 2022, 179, 107621. | 2.6 | 13        |
| 14 | Pore scale simulation for melting of composite phase change materials considering interfacial thermal resistance. Applied Thermal Engineering, 2022, 212, 118624.                                             | 3.0 | 7         |
| 15 | Experimental Characterization and Model Verification of Thermal Conductivity from Mesoporous to Macroporous SiOC Ceramics. Journal of Thermal Science, 2021, 30, 465-476.                                     | 0.9 | 16        |
| 16 | Thermal barrier effect from internal pore channels on thickened aluminum nanofilm. International<br>Journal of Thermal Sciences, 2021, 162, 106781.                                                           | 2.6 | 17        |
| 17 | Interfacial heat transport in nano-carbon assemblies. Carbon, 2021, 178, 391-412.                                                                                                                             | 5.4 | 52        |
| 18 | A Neural Regression Model for Predicting Thermal Conductivity of CNT Nanofluids with Multiple Base<br>Fluids. Journal of Thermal Science, 2021, 30, 1908-1916.                                                | 0.9 | 3         |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Research status of centrifugal granulation, physical heat recovery and resource utilization of blast furnace slags. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105220.                                 | 2.6  | 36        |
| 20 | Smart design of highâ€performance surfaceâ€enhanced Raman scattering substrates. SmartMat, 2021, 2,<br>466-487.                                                                                                     | 6.4  | 26        |
| 21 | Theoretical Evaluation of Microwave Ablation Applied on Muscle, Fat and Bone: A Numerical Study.<br>Applied Sciences (Switzerland), 2021, 11, 8271.                                                                 | 1.3  | 7         |
| 22 | Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy, 2021, 233, 121158.                                                        | 4.5  | 31        |
| 23 | Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance. Composites Communications, 2021, 27, 100892.                              | 3.3  | 45        |
| 24 | Freestanding Flexible Sensor Based on 3ω Technique for Anisotropic Thermal Conductivity<br>Measurement of Potassium Dihydrogen Phosphate Crystal. Sensors, 2021, 21, 7968.                                          | 2.1  | 7         |
| 25 | Inside Back Cover: Volume 2 Issue 4. SmartMat, 2021, 2, .                                                                                                                                                           | 6.4  | 0         |
| 26 | Three-Dimensional Graphene Hydrogel Decorated with SnO <sub>2</sub> for High-Performance<br>NO <sub>2</sub> Sensing with Enhanced Immunity to Humidity. ACS Applied Materials & Interfaces,<br>2020, 12, 2634-2643. | 4.0  | 70        |
| 27 | A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports, 2020, 843, 1-81.                                                                          | 10.3 | 344       |
| 28 | Flexible, 3D SnS2/Reduced graphene oxide heterostructured NO2 sensor. Sensors and Actuators B:<br>Chemical, 2020, 305, 127445.                                                                                      | 4.0  | 91        |
| 29 | Experimental study on particle flow characteristics of three-dimensional moving bed. Powder Technology, 2020, 374, 399-408.                                                                                         | 2.1  | 11        |
| 30 | In vivo skin thermophysical property testing technology using flexible thermosensor-based 3ï‰ method.<br>International Journal of Heat and Mass Transfer, 2020, 163, 120550.                                        | 2.5  | 17        |
| 31 | Numerical simulation of gas–solid heat transfer characteristics of porous structure composed of high-temperature particles in moving bed. Applied Thermal Engineering, 2020, 181, 115925.                           | 3.0  | 20        |
| 32 | Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites.<br>International Journal of Heat and Mass Transfer, 2020, 152, 119565.                                                  | 2.5  | 23        |
| 33 | Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle. International Journal of Heat and Mass Transfer, 2020, 154, 119750.                                          | 2.5  | 12        |
| 34 | Shampoo assisted aligning of carbon nanotubes toward strong, stiff and conductive fibers. RSC<br>Advances, 2020, 10, 18715-18720.                                                                                   | 1.7  | 7         |
| 35 | Study on heat transfer of process intensification in moving bed reactor based on the discrete element method. Chemical Engineering and Processing: Process Intensification, 2020, 151, 107915.                      | 1.8  | 18        |
| 36 | Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: a molecular dynamics study. RSC Advances, 2020, 10, 44196-44204.                            | 1.7  | 8         |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Heat recovery process modelling of semi-molten blast furnace slag in a moving bed using XDEM.<br>Energy, 2019, 186, 115876.                                                                                                          | 4.5 | 25        |
| 38 | Three-Dimensional-Structured Boron- and Nitrogen-Doped Graphene Hydrogel Enabling<br>High-Sensitivity NO <sub>2</sub> Detection at Room Temperature. ACS Sensors, 2019, 4, 1889-1898.                                                | 4.0 | 58        |
| 39 | Three-dimensional fluid-solid coupling heat transfer simulation based on the multireference frame<br>for a side-blown aluminum annealing furnace. Engineering Applications of Computational Fluid<br>Mechanics, 2019, 13, 1036-1048. | 1.5 | 3         |
| 40 | Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow<br>Stimuli Using an Integrated Microheater. ACS Applied Materials & Interfaces, 2019, 11, 43383-43392.                                | 4.0 | 64        |
| 41 | Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 2019, 145, 725-733.                                                                                                | 5.4 | 50        |
| 42 | Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon, 2019, 145, 650-657.                                                                                   | 5.4 | 52        |
| 43 | Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 2019, 109, 578-605.                                            | 8.2 | 120       |
| 44 | Review on micro/nano phase change materials for solar thermal applications. Renewable Energy, 2019,<br>140, 513-538.                                                                                                                 | 4.3 | 185       |
| 45 | Size effect on the thermal conductivity of octadecanoic acid: A molecular dynamics study.<br>Computational Materials Science, 2019, 158, 14-19.                                                                                      | 1.4 | 16        |
| 46 | Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon, 2019, 141, 497-505.                                               | 5.4 | 136       |
| 47 | Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based 3 ï‰ technique. Surface and Coatings Technology, 2018, 345, 105-112.                                              | 2.2 | 16        |
| 48 | Advances in thermal transport properties at nanoscale in China. International Journal of Heat and Mass Transfer, 2018, 125, 413-433.                                                                                                 | 2.5 | 31        |
| 49 | Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators.<br>Applied Thermal Engineering, 2018, 130, 1004-1011.                                                                            | 3.0 | 78        |
| 50 | Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3 <i>݉</i> method. Review of Scientific Instruments, 2018, 89, 096112.                                                      | 0.6 | 18        |
| 51 | Numerical simulation and optimization of the melting process for the regenerative aluminum melting furnace. Applied Thermal Engineering, 2018, 145, 315-327.                                                                         | 3.0 | 25        |
| 52 | Highly Conducting Polythiophene Thin Films with Less Ordered Microstructure Displaying Excellent<br>Thermoelectric Performance. Macromolecular Rapid Communications, 2018, 39, e1800283.                                             | 2.0 | 21        |
| 53 | lodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Applied<br>Thermal Engineering, 2018, 141, 913-920.                                                                                       | 3.0 | 45        |
| 54 | Advanced Thermal Interface Materials for Thermal Management. Engineered Science, 2018, , .                                                                                                                                           | 1.2 | 10        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Extremely Low Thermal Conductivity of Graphene Nanoplatelets Using Nanoparticle Decoration. ES<br>Energy & Environments, 2018, , .                                                                                  | 0.5  | 17        |
| 56 | Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600852.            | 0.8  | 20        |
| 57 | Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon, 2017, 120, 128-136.                                                                                                    | 5.4  | 57        |
| 58 | 3ï‰ slope comparative method for fluid and powder thermal conductivity measurements. Modern<br>Physics Letters B, 2016, 30, 1650322.                                                                                | 1.0  | 3         |
| 59 | Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube<br>array film. Scientific Reports, 2016, 6, 21014.                                                                   | 1.6  | 68        |
| 60 | Flexible nâ€Type Highâ€Performance Thermoelectric Thin Films of Poly(nickelâ€ethylenetetrathiolate)<br>Prepared by an Electrochemical Method. Advanced Materials, 2016, 28, 3351-3358.                              | 11.1 | 206       |
| 61 | Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon, 2016, 105, 248-259.                                           | 5.4  | 64        |
| 62 | Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations. International Journal of Thermophysics, 2015, 36, 2523-2534.                                                                          | 1.0  | 15        |
| 63 | Study on heat-storage and release characteristics of multi-cavity-structured phase-change microcapsules. Phase Transitions, 2015, 88, 704-715.                                                                      | 0.6  | 10        |
| 64 | Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3ï‰ technique. International Journal of Thermal Sciences, 2015, 89, 185-192.                            | 2.6  | 22        |
| 65 | Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation. Journal of Applied Physics, 2014, 116, .                                                           | 1.1  | 10        |
| 66 | The Effective Thermal Conductivity of Porous Polymethacrylimide Foams. Key Engineering Materials, 2014, 609-610, 196-200.                                                                                           | 0.4  | 2         |
| 67 | Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics. International Journal of Thermophysics, 2014, 35, 76-89.                                                                                | 1.0  | 49        |
| 68 | Effective Thermal-Conductivity Measurement on Germanate Glass–Ceramics Employing the \$\$30mega<br>\$\$ 3 ï‰ Method at High Temperature. International Journal of Thermophysics, 2014, 35, 336-345.                 | 1.0  | 3         |
| 69 | Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity. Applied Surface Science, 2014, 317, 338-349.                                                                  | 3.1  | 35        |
| 70 | Measurement of Thermal Conductivity of Anisotropic SiC Crystal. International Journal of Thermophysics, 2013, 34, 2334-2342.                                                                                        | 1.0  | 15        |
| 71 | Design and Application of a Freestanding Sensor Based on 3ï‰ Technique for Thermal-Conductivity<br>Measurement of Solids, Liquids, and Nanopowders. International Journal of Thermophysics, 2013, 34,<br>2261-2275. | 1.0  | 25        |
| 72 | The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon, 2013, 51, 265-273.                                                                      | 5.4  | 62        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Measurement of thermal conductivities of [mmim]DMP/CH3OH and [mmim]DMP/H2O by freestanding sensor-based 3ï‰ technique. Thermochimica Acta, 2013, 560, 1-6.                                            | 1.2 | 19        |
| 74 | Study on the heat conduction of phase-change material microcapsules. Journal of Thermal Science, 2013, 22, 257-260.                                                                                   | 0.9 | 8         |
| 75 | Thermal conductivity and thermal diffusivity of SiO2 nanopowder. Journal of Nanoparticle Research, 2011, 13, 6887-6893.                                                                               | 0.8 | 25        |
| 76 | The freestanding sensor-based 3ï‰ technique for measuring thermal conductivity of solids: Principle and examination. Review of Scientific Instruments, 2011, 82, 045106.                              | 0.6 | 30        |
| 77 | Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3 <i>ï‰</i> technique. Review of Scientific Instruments, 2011, 82, 086110. | 0.6 | 14        |