Xu An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801933/publications.pdf

Version: 2024-02-01

		759233	1125743	
14	868	12	13	
papers	citations	h-index	g-index	
23	23	23	980	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex. Neuron, 2021, 109, 502-515.e7.	8.1	23
2	Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nature Neuroscience, 2021, 24, 1586-1600.	14.8	56
3	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
4	Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature, 2021, 598, 182-187.	27.8	75
5	Cellular anatomy of the mouse primary motor cortex. Nature, 2021, 598, 159-166.	27.8	117
6	A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex. Frontiers in Behavioral Neuroscience, 2016, 10, 42.	2.0	18
7	The Neural Mechanism of Direction- and Orientation-Selective Neurons for Processing Direction, Speed, and Axis of Motion in Early Visual Cortices. Advances in Cognitive Neurodynamics, 2016, , 57-63.	0.1	O
8	The Topographical Arrangement of Cutoff Spatial Frequencies across Lower and Upper Visual Fields in Mouse V1. Scientific Reports, 2015, 5, 7734.	3.3	15
9	Breaking cover: neural responses to slow and fast camouflage-breaking motion. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151182.	2.6	25
10	The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Molecular Brain, 2015, 8, 49.	2.6	15
11	Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2. PLoS ONE, 2014, 9, e106753.	2.5	19
12	The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices. PLoS ONE, 2014, 9, e93115.	2.5	20
13	Equivalent Representation of Real and Illusory Contours in Macaque V4. Journal of Neuroscience, 2012, 32, 6760-6770.	3.6	63
14	Distinct Functional Organizations for Processing Different Motion Signals in V1, V2, and V4 of Macaque. Journal of Neuroscience, 2012, 32, 13363-13379.	3.6	49