Linda May

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801663/publications.pdf

Version: 2024-02-01

361413 315739 2,946 38 20 citations h-index papers

38 g-index 40 40 40 4698 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 2015, 42, 10,773.	4.0	767
2	Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. Journal of Environmental Quality, 2013, 42, 1308-1326.	2.0	706
3	A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data, 2015, 2, 150008.	5.3	153
4	Do septic tank systems pose a hidden threat to water quality?. Frontiers in Ecology and the Environment, 2014, 12, 123-130.	4.0	139
5	Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Science of the Total Environment, 2017, 584-585, 118-130.	8.0	128
6	National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Science of the Total Environment, 2018, 610-611, 666-677.	8.0	126
7	Do early warning indicators consistently predict nonlinear change in longâ€term ecological data?. Journal of Applied Ecology, 2016, 53, 666-676.	4.0	104
8	Substantial increase in minimum lake surface temperatures under climate change. Climatic Change, 2019, 155, 81-94.	3.6	66
9	Global Climate. Bulletin of the American Meteorological Society, 2020, 101, S9-S128.	3.3	61
10	Rotifer occurrence in relation to water temperature in Loch Leven, Scotland. Hydrobiologia, 1983, 104, 311-315.	2.0	53
11	Ecological resilience in lakes and the conjunction fallacy. Nature Ecology and Evolution, 2017, 1, 1616-1624.	7.8	52
12	Effect of incubation temperature on the hatching of rotifer resting eggs collected from sediments. Hydrobiologia, 1987, 147, 335-338.	2.0	43
13	Increasing maximum lake surface temperature under climate change. Climatic Change, 2021, 165, 1.	3.6	43
14	Changes in Rotifer Species Composition and Abundance along a Trophic Gradient in Loch Lomond, Scotland, UK. Hydrobiologia, 2005, 546, 397-404.	2.0	38
15	Nutrient fluxes from domestic wastewater: A national-scale historical perspective for the UK 1800–2010. Science of the Total Environment, 2016, 572, 1471-1484.	8.0	36
16	Maximum growing depth of macrophytes in Loch Leven, Scotland, United Kingdom, in relation to historical changes in estimated phosphorus loading. Hydrobiologia, 2010, 646, 123-131.	2.0	35
17	Variation in chlorophyll a to total phosphorus ratio across 94 UK and Irish lakes: Implications for lake management. Journal of Environmental Management, 2013, 115, 287-294.	7.8	35
18	The potential role of sediment organic phosphorus in algal growth in a low nutrient lake. Environmental Pollution, 2019, 255, 113235.	7.5	35

#	Article	IF	CITATIONS
19	Emerging water pollution in the world's least disturbed lakes on Qinghai-Tibetan Plateau. Environmental Pollution, 2021, 272, 116032.	7.5	31
20	An evaluation of methods for sampling macrophyte maximum colonisation depth in Loch Leven, Scotland. Aquatic Botany, 2009, 91, 75-81.	1.6	26
21	Exploring the demarcation requirements of fish breeding and nursery sites to balance the exploitation, management and conservation needs of Lake Victoria ecosystem. Fisheries Management and Ecology, 2019, 26, 451-459.	2.0	19
22	A metadata approach to documenting sex in phylum Rotifera: diapausing embryos, males, and hatchlings from sediments. Hydrobiologia, 2017, 796, 265-276.	2.0	18
23	The importance of nitrogen limitation in the restoration of Llangorse Lake, Wales, UK. Journal of Environmental Monitoring, 2010, 12, 338-346.	2.1	15
24	Title is missing!. Hydrobiologia, 2001, 446/447, 29-34.	2.0	14
25	Water for all: Towards an integrated approach to wetland conservation and flood risk reduction in a lowland catchment in Scotland. Journal of Environmental Management, 2019, 246, 881-896.	7.8	12
26	Lake management: is prevention better than cure?. Inland Waters, 2022, 12, 173-186.	2.2	12
27	Nitrogen in Water-Portugal and Denmark: Two Contrasting Realities. Water (Switzerland), 2019, 11, 1114.	2.7	11
28	Ecological Instability in Lakes: A Predictable Condition?. Environmental Science & Econology, 2016, 50, 3285-3286.	10.0	10
29	The response of the rotifer community in Loch Leven, UK, to changes associated with a 60% reduction in phosphorus inputs from the catchment. International Review of Hydrobiology, 2014, 99, 65-71.	0.9	9
30	Controlling water hyacinth (<i>Eichhornia crassipes</i> (Mart.) Solms): a proposed framework for preventative management. Inland Waters, 2022, 12, 163-172.	2.2	9
31	Assessment of a novel development policy for the control of phosphorus losses from private sewage systems to the Loch Leven catchment, Scotland, UK. Environmental Science and Policy, 2014, 38, 207-216.	4.9	8
32	Long-term homeostasis of filterable un-reactive phosphorus in a shallow eutrophic lake following a significant reduction in catchment load. Geoderma, 2015, 257-258, 78-85.	5.1	7
33	An examination of long-term ecological studies of rotifers: comparability of methods and results, insights into drivers of change and future research challenges. Hydrobiologia, 2019, 844, 129-147.	2.0	6
34	A GISâ€based approach for delineating suitable areas for cage fish culture in a lake. Lakes and Reservoirs: Research and Management, 2021, 26, e12357.	0.9	4
35	The effect of lake fertilisation on the rotifers of Seathwaite Tarn, an acidified lake in the English Lake District. Hydrobiologia, 1995, 313-314, 333-340.	2.0	3
36	Preface: Shallow lakes research: advances and perspectives. Hydrobiologia, 2019, 829, 1-4.	2.0	3

#	Article	IF	CITATIONS
37	An Assessment of the Performance of the PLUS+ Tool in Supporting the Evaluation of Water Framework Directive Compliance in Scottish Standing Waters. International Journal of Environmental Research and Public Health, 2020, 17, 391.	2.6	3
38	Preface: evolving rotifers, evolving science. Hydrobiologia, 2017, 796, 1-6.	2.0	1