Viveca Ritsinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801396/publications.pdf

Version: 2024-02-01

		1163117	1125743	
14	295	8	13	
papers	citations	h-index	g-index	
14	14	14	589	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Mannose-binding lectin does not explain the dismal prognosis after an acute coronary event in dysglycaemic patients. A report from the GAMI cohort. Cardiovascular Diabetology, 2022, 21, .	6.8	O
2	Risk of stent failure in patients with diabetes treated with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors: A nationwide observational study. International Journal of Cardiology, 2021, 330, 23-29.	1.7	6
3	Admission Glucose Levels and Associated Risk for Heart Failure After Myocardial Infarction in Patients Without Diabetes. Journal of the American Heart Association, 2021, 10, e022667.	3.7	6
4	Diabetes, metformin and glucose lowering therapies after myocardial infarction: Insights from the SWEDEHEART registry. Diabetes and Vascular Disease Research, 2020, 17, 147916412097367.	2.0	9
5	Heart failure is a common complication after acute myocardial infarction in patients with diabetes: A nationwide study in the SWEDEHEART registry. European Journal of Preventive Cardiology, 2020, 27, 1890-1901.	1.8	24
6	Elevated admission glucose is common and associated with high short-term complication burden after acute myocardial infarction: Insights from the VALIDATE-SWEDEHEART study. Diabetes and Vascular Disease Research, 2019, 16, 582-584.	2.0	15
7	Characteristics and Prognosis in Women and Men With Type 1 Diabetes Undergoing Coronary Angiography: A Nationwide Registry Report. Diabetes Care, 2018, 41, 876-883.	8.6	8
8	Dynamics of testosterone levels in patients with newly detected glucose abnormalities and acute myocardial infarction. Diabetes and Vascular Disease Research, 2018, 15, 511-518.	2.0	7
9	Elevated levels of insulin-like growth factor-binding protein 1 predict outcome after acute myocardial infarction: A long-term follow-up of the glucose tolerance in patients with acute myocardial infarction (GAMI) cohort. Diabetes and Vascular Disease Research, 2018, 15, 387-395.	2.0	6
10	Copeptin in patients with acute myocardial infarction and newly detected glucose abnormalities – A marker of increased stress susceptibility? A report from the Glucose in Acute Myocardial Infarction cohort. Diabetes and Vascular Disease Research, 2017, 14, 69-76.	2.0	19
11	Elevated levels of adipokines predict outcome after acute myocardial infarction: A long-term follow-up of the Glucose Tolerance in Patients with Acute Myocardial Infarction cohort. Diabetes and Vascular Disease Research, 2017, 14, 77-87.	2.0	19
12	Sustained prognostic implications of newly detected glucose abnormalities in patients with acute myocardial infarction: Long-term follow-up of the Glucose Tolerance in Patients with Acute Myocardial Infarction cohort. Diabetes and Vascular Disease Research, 2015, 12, 23-32.	2.0	49
13	High Event Rate After a First Percutaneous Coronary Intervention in Patients With Diabetes Mellitus. Circulation: Cardiovascular Interventions, 2015, 8, e002328.	3.9	54
14	Intensified insulin-based glycaemic control after myocardial infarction: mortality during 20 year follow-up of the randomised Diabetes Mellitus Insulin Glucose Infusion in Acute Myocardial Infarction (DIGAMI 1) trial. Lancet Diabetes and Endocrinology,the, 2014, 2, 627-633.	11.4	73