Andrzej Waå,Äða

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/880136/publications.pdf

Version: 2024-02-01

90 papers 1,060 citations

471371 17 h-index 27 g-index

90 all docs 90 docs citations

90 times ranked 761 citing authors

#	Article	IF	CITATIONS
1	Environmental Flows Assessment in Nepal: The Case of Kaligandaki River. Sustainability, 2020, 12, 8766.	1.6	60
2	Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. Journal of Hydrology: Regional Studies, 2020, 27, 100645.	1.0	51
3	Influence of meteorological drought on environmental flows in mountain catchments. Ecological Indicators, 2021, 133, 108460.	2.6	45
4	Combined use of the hydraulic and hydrological methods to calculate the environmental flow: Wisloka river, Poland: case study. Environmental Monitoring and Assessment, 2019, 191, 254.	1.3	43
5	Estimation of CN Parameter for Small Agricultural Watersheds Using Asymptotic Functions. Water (Switzerland), 2015, 7, 939-955.	1.2	41
6	The comparison of environmental flow assessment - The barrier for investment in Poland or river protection?. Journal of Cleaner Production, 2018, 193, 575-592.	4.6	41
7	Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere, 2019, 10, 43.	1.0	39
8	Influence of land cover data sources on estimation of direct runoff according to SCS-CN and modified SME methods. Catena, 2019, 172, 232-242.	2.2	37
9	Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere, 2018, 9, 313.	1.0	35
10	Flood frequency analysis by an event-based rainfall-runoff model in selected catchments of southern Poland. Soil and Water Research, 2018, 13, 170-176.	0.7	35
11	Analysis of the Course and Frequency of High Water Stages in Selected Catchments of the Upper Vistula Basin in the South of Poland. Water (Switzerland), 2016, 8, 394.	1.2	25
12	Application of HEC-HMS programme for the reconstruction of a flood event in an uncontrolled basin / Zastosowanie programu HEC-HMS do odtworzenia wezbrania powodziowego w zlewni niekontrolowanej. Journal of Water and Land Development, 2013, 18, 13-20.	0.9	24
13	Sensitivity of methods for calculating environmental flows based on hydrological characteristics of watercourses regarding the hydropower potential of rivers. Journal of Cleaner Production, 2020, 250, 119527.	4.6	24
14	The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environmentâ€"Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area. Sustainability, 2021, 13, 12674.	1.6	24
15	Usefulness of the Modified NRCS-CN Method for the Assessment of Direct Runoff in a Mountain Catchment. Acta Geophysica, 2015, 63, 1423-1446.	1.0	20
16	Possibilities of Applying Hydrological Methods for Determining Environmental Flows in Select Catchments of the Upper Dunajec Basin. Polish Journal of Environmental Studies, 2015, 24, 2663-2676.	0.6	19
17	Comparison of SCS-CN determination methodologies in a heterogeneous catchment. Journal of Mountain Science, 2015, 12, 1084-1094.	0.8	18
18	COMPARISON OF DIRECT OUTFLOW CALCULATED BY MODIFIED SCS-CN METHODS FOR MOUNTAINOUS AND HIGHLAND CATCHMENTS IN UPPER VISTULA BASIN, POLAND AND LOWLAND CATCHMENT IN SOUTH CAROLINA, USA. Acta Scientiarum Polonorum Formatio Circumiectus, 2017, 1, 187-207.	0.2	18

#	Article	IF	Citations
19	A New Empirical Approach to Calculating Flood Frequency in Ungauged Catchments: A Case Study of the Upper Vistula Basin, Poland. Water (Switzerland), 2019, 11, 601.	1.2	17
20	Possibility of Using Selected Rainfall-Runoff Models for Determining the Design Hydrograph in Mountainous Catchments: A Case Study in Poland. Water (Switzerland), 2020, 12, 1450.	1.2	17
21	Link between hydric potential and predictability of maximum flow for selected catchments in Western Carpathians. Science of the Total Environment, 2019, 683, 293-307.	3.9	16
22	New approach for determining the quantiles of maximum annual flows in ungauged catchments using the EBA4SUB model. Journal of Hydrology, 2020, 589, 125198.	2.3	16
23	Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria. Atmosphere, 2021, 12, 798.	1.0	15
24	Influence of rainfall data on the uncertainty of flood simulation. Soil and Water Research, 2016, 11, 277-284.	0.7	14
25	Influence of Changes of Catchment Permeability and Frequency of Rainfall on Critical Storm Duration in an Urbanized Catchment—A Case Study, Cracow, Poland. Water (Switzerland), 2019, 11, 2557.	1.2	14
26	Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water (Switzerland), 2021, 13, 3103.	1.2	14
27	Forecasting of SPI and SRI Using Multiplicative ARIMA under Climate Variability in a Mediterranean Region: Wadi Ouahrane Basin, Algeria. Climate, 2022, 10, 36.	1.2	14
28	Urbanizationâ€"Its Hidden Impact on Water Losses: PrÄ…dnik River Basin, Lesser Poland. Water (Switzerland), 2020, 12, 1958.	1.2	13
29	Meteorological and Hydrological Drought Risk Assessment Using Multi-Dimensional Copulas in the Wadi Ouahrane Basin in Algeria. Water (Switzerland), 2022, 14, 653.	1.2	13
30	Seasonality of mean flows as a potential tool for the assessment of ecological processes: Mountain rivers, Polish Carpathians. Science of the Total Environment, 2020, 716, 136988.	3.9	12
31	Analysis of the Spatiotemporal Annual Rainfall Variability in the Wadi Cheliff Basin (Algeria) over the Period 1970 to 2018. Water (Switzerland), 2021, 13, 1477.	1.2	12
32	CLUSTER ANALYSIS IN DETERMINATION OF HYDROLOGICALLY HOMOGENEOUS REGIONS WITH LOW FLOW. Acta Scientiarum Polonorum Formatio Circumiectus, 2017, 1, 53-63.	0.2	12
33	Rainfall-runoff modeling: A modification of the EBA4SUB framework for ungauged and highly impervious urban catchments. Journal of Hydrology, 2022, 606, 127371.	2.3	11
34	SPATIAL-TEMPORAL CHARACTERIZATION OF METEOROLOGICAL DROUGHT USING THE STANDARDIZED PRECIPITATION INDEX.CASE STUDY IN ALGERIA. Acta Scientiarum Polonorum Formatio Circumiectus, 2021, 20, 19-31.	0.2	11
35	Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and GEP Models. Water (Switzerland), 2022, 14, 1210.	1.2	11
36	Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin. Acta Geophysica, 2017, 65, 363-375.	1.0	10

#	Article	IF	CITATIONS
37	Hydric potential of the river basin: PrÄdnik, Polish Highlands. Acta Geophysica, 2017, 65, 1253-1267.	1.0	10
38	The importance of calibration parameters on the accuracy of the floods description in the Snyder's model. Journal of Water and Land Development, 2016, 28, 19-25.	0.9	10
39	The evaluation of heavy metal content in water and sediments of small reservoirs in light of various environmental quality regulations. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 827-832.	0.9	9
40	Runoff formation in terms of changes in land use – MÅ›ciwojów water reservoir area/ OdpÅ,yw powierzchniowy w rejonie zbiornika wodnego MÅ›ciwojów w Å›wietle planowanych zmian urbanistycznych. Journal of Water and Land Development, 2014, 23, 3-10.	0.9	9
41	New Empirical Model Using Landscape Hydric Potential Method to Estimate Median Peak Discharges in Mountain Ungauged Catchments. Water (Switzerland), 2020, 12, 983.	1.2	9
42	The use of NRCS synthetic unit hydrograph and Wackermann conceptual model in the simulation of a flood wave in an uncontrolled catchment/ Zastosowanie syntetycznego hydrogramu jednostkowego NRCS oraz konceptualnego modelu Wackermana do symulacji fali wezbraniowej w zlewni niekontrolowanej. Journal of Water and Land Development, 2014, 23, 53-59.	0.9	9
43	Hydrological Response of the Kunhar River Basin in Pakistan to Climate Change and Anthropogenic Impacts on Runoff Characteristics. Water (Switzerland), 2021, 13, 3163.	1.2	9
44	Characteristics of extreme heavy precipitation events occurring in the area of Cracow (Poland). Soil and Water Research, 2014, 9, 182-191.	0.7	8
45	Small hydraulic structures, big environmental problems: is it possible to mitigate the negative impacts of culverts on stream biota?. Environmental Reviews, 2021, 29, 510-528.	2.1	8
46	Nitrogen and Phosphorus Removal from Sewage in Biofilter – Activated Sludge Combined Systems. Polish Journal of Environmental Studies, 2019, 28, 1939-1947.	0.6	8
47	Influence of the Hybrid Sewage Treatment Plant's Exploitation on Its Operation Effectiveness in Rural Areas. Sustainability, 2018, 10, 2689.	1.6	7
48	Effect of a Retention Basin on Removing Pollutants from Stormwater: A Case Study in Poland. Polish Journal of Environmental Studies, 2018, 27, 1795-1803.	0.6	7
49	Verification of empirical formulas for calculating annual peak flows with specific return period in the upper Vistula basin. Acta Scientiarum Polonorum Formatio Circumiectus, 2018, 2, 145-154.	0.2	7
50	Assessment of the Impact of Forestry and Settlement-Forest Use of the Catchments on the Parameters of Surface Water Quality: Case Studies for ChechÅ,o Reservoir Catchment, Southern Poland. Water (Switzerland), 2019, 11, 964.	1.2	6
51	VERIFICATION OF EMPIRICAL FORMULAS FOR CALCULATING MEAN LOW FLOW WITH THE VIEW TO EVALUATING AVAILABLE WATER RESOURCES. Acta Scientiarum Polonorum Formatio Circumiectus, 2019, 2, 83-92.	0.2	6
52	Investigation of the Effect of Climate Change on Energy Produced by Hydroelectric Power Plants (HEPPs) by Trend Analysis Method: A Case Study for Dogancay l–II HEPPs. Energies, 2022, 15, 2474.	1.6	6
53	Identification of the Relationship between Rainfall and the CN Parameter in Western Carpathian Mountain Catchments in Poland. Sustainability, 2020, 12, 9317.	1.6	5
54	New Insights on Flood Mapping Procedure: Two Case Studies in Poland. Sustainability, 2020, 12, 8454.	1.6	5

#	Article	IF	CITATIONS
55	Prediction of the Stability of Chemical Composition of Therapeutic Groundwater. Water (Switzerland), 2020, 12, 103.	1.2	5
56	The Use of Asymptotic Functions for Determining Empirical Values of <i>CN</i> Parameter in Selected Catchments of Variable Land Cover. Studia Geotechnica Et Mechanica, 2017, 39, 111-120.	0.2	5
57	APPLICATION OF POLISH EXPERIENCE IN THE IMPLEMENTATION OF THE FLOOD DIRECTIVE IN GEORGIA – HYDROLOGICAL CALCULATIONS. Acta Scientiarum Polonorum Formatio Circumiectus, 2017, 3, 89-110.	0.2	5
58	The influence of land cover changes on landscape hydric potential and river flows: Upper Vistula, Western Carpathians. Catena, 2022, 210, 105878.	2.2	5
59	The use of bioretention cell to decreasing outflow from parking lot. Journal of Water and Land Development, 2018, 36, 173-181.	0.9	4
60	Application of Modified SME-CN Method for Predicting Event Runoff and Peak Discharge from a Drained Forest Watershed on the North Carolina Atlantic Coastal Plain. Transactions of the ASABE, 2020, 63, 275-288.	1.1	4
61	The flood risk assessment in Cracow agglomeration as an element of a flood risk management. Acta Scientiarum Polonorum Formatio Circumiectus, 2015, 13, 259-273.	0.2	4
62	ANALYSIS OF HYDROLOGICAL REGIME OF THE MOUNTAIN CATCHMENT IN MULTI-YEAR 1985–2012 FOR EXAMPLE OF THE KAMIENICA RIVER. Acta Scientiarum Polonorum Formatio Circumiectus, 2016, 15, 177-186.	0.2	4
63	Response of Nutrients and Sediment to Hydrologic Variables in Switchgrass Intercropped Pine Forest Ecosystems on Poorly Drained Soil. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	3
64	The effect of a hydrological model structure and rainfall data on the accuracy of flood description in an upland catchment. Annals of Warsaw University of Life Sciences, Land Reclamation, 2015, 47, 305-320.	0.2	3
65	Estimating the Occurrence of Trends in Selected Elements of a Small Sub-Mountain Catchment Hydrological Regime. Polish Journal of Environmental Studies, 2016, 25, 2151-2159.	0.6	3
66	The Role of Local Precipitation Models in Designing Rainwater Drainage Systems in Urban Areas: a Case Study in Krakow, Poland. Polish Journal of Environmental Studies, 2016, 25, 2139-2149.	0.6	3
67	Influence of time of concentration on variation of runoff from a small urbanized watershed. Geomatics, Landmanagement and Landscape, 2015, 2, 7-19.	0.0	3
68	Assessment of Silting Degree and Usable Lifetime of Small Reservoirs. Irrigation and Drainage, 2015, 64, 575-583.	0.8	2
69	The cyclical nature of hydrological regime of a mountain and upland river in the upper Vistula catchment in the multi-year period of 1984–2012: A potential tool for paleohydrology analysis. Quaternary International, 2019, 504, 195-201.	0.7	2
70	<i>Assessing Runoff using Modified SME-CN Method for a Drained Forest Watershed on North Carolina Atlantic Coastal Plain</i> ., 2019,,.		2
71	Optimizing Treatment of Cesspool Wastewater at an Activated Sludge Plant. Sustainability, 2020, 12, 10196.	1.6	2
72	On using the GIS methods for analysing cultural landscapes of land water resources: the Mŷciwojów water reservoir region. Acta Scientiarum Polonorum Formatio Circumiectus, 2016, 14, 109-133.	0.2	2

#	Article	IF	CITATIONS
73	Evaluation of soil water erosion risk in the MÅ $_{\circ}$ ciwoj \tilde{A}^{3} w water reservoir drainage basin on the basis of numeric modelling. Geomatics, Landmanagement and Landscape, 2013, 1, 83-95.	0.0	2
74	The importance of the objective functions and flexibility on calibration of parameters of clark instantaneous unit hydrograph. Geomatics, Landmanagement and Landscape, 2015, 2, 75-85.	0.0	2
7 5	Influence of changes in land use on the values of maximal peak flows on example of Winna $G\tilde{A}^3$ ra in the neighbourhood of MÅ $_2$ ciwoj \tilde{A}^3 w reservoir. Geomatics, Landmanagement and Landscape, 2013, 2, 101-112.	0.0	2
76	Åšrodowiskowe i spoÅ,eczne efekty scaleÅ,, gruntów. , 2021, , .		2
77	Modelling annual maximum daily rainfall with the STORAGE (STOchastic RAinfall GEnerator) model. Hydrology Research, 2022, 53, 547-561.	1.1	2
78	The use of hierarchical cluster analysis for grouping atmospheric precipitation in Poland. E3S Web of Conferences, 2019, 86, 00018.	0.2	1
79	COMPARISON OF METHODS FOR DETERMINING ENVIRONMENTAL FLOW IN SELECTED MOUNTAIN BASINS. Inżynieria Ekologiczna, 2015, 44, 184-190.	0.2	1
80	Determination of the rating curve in the backwater cross-section of reservoirs at ZesÅ,awice. Acta Scientiarum Polonorum Formatio Circumiectus, 2016, 15, 113-124.	0.2	1
81	The concept of socio-hydrology in the flood risk analysis. Acta Scientiarum Polonorum Formatio Circumiectus, 2015, 14, 175-189.	0.2	1
82	VERIFICATION OF EMPIRICAL FORMULAS FOR CALCULATING MEAN LOW FLOW WITH THE VIEW TO EVALUATING AVAILABLE WATER RESOURCES. Acta Scientiarum Polonorum Formatio Circumiectus, 2019, 2, 83-92.	0.2	1
83	The influence of physical and geographical catchment parameters and precipitation characteristics on the runoff time of concentration. Journal of Civil Engineering, Environment and Architecture, 2013, XXX, 143-160.	0.0	1
84	APPLICATION OF SELECTED HYDROLOGICAL MODELS FOR THE CALCULATION OF OVERLAND FLOW. Acta Scientiarum Polonorum Formatio Circumiectus, 2014, 13, 81-93.	0.2	1
85	Basics of Hydrology for Streams and Rivers. , 2017, , 212-240.		1
86	Preface to Drought Risk Management to Reflect Changing Meteorological Conditions. Atmosphere, 2021, 12, 1660.	1.0	1
87	Influence of Rainfall Events and Surface Inclination on Overland and Subsurface Runoff Formation on Low-Permeable Soil. Sustainability, 2022, 14, 4962.	1.6	1
88	Preface to "Advances in Sustainable River Management: Reconciling Conflicting Interests under Climate Extremes''. Sustainability, 2021, 13, 10087.	1.6	0
89	Mean annual precipitation in a mountain river catchment area in the period 1984–2012 (the case of) Tj ETQq1	1 0.78431 0.0	4 rgBT /Ove
90	The influence of meteorological and hydrological factors on the operation and performance of a semi-natural rainwater purification plant. Meteorology Hydrology and Water Management, 0, , .	0.4	O