
Laurent Reber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801020/publications.pdf Version: 2024-02-01

LAUDENT PERED

#	Article	IF	CITATIONS
1	IgE antibodies increase honeybee venom responsiveness and detoxification efficiency of mast cells. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 499-512.	2.7	15
2	Combining Anti-IgE Monoclonal Antibodies and Oral Immunotherapy for the Treatment of Food Allergy. Clinical Reviews in Allergy and Immunology, 2022, 62, 216-231.	2.9	13
3	The antiâ€FcεRI antibody MARâ€1 depletes basophils and crossâ€reacts with myeloid cells through its Fc portion. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1903-1906.	2.7	0
4	Increased fermentable carbohydrate intake alters colonic mucus barrier function through glycation processes and increased mast cell counts. FASEB Journal, 2022, 36, e22297.	0.2	13
5	Pharmacological approaches to target type 2 cytokines in asthma. , 2022, 237, 108167.		8
6	lgE in the pathophysiology and therapy of food allergy. European Journal of Immunology, 2021, 51, 531-543.	1.6	12
7	Cardiovascular adverse effects of anti–IL-5/IL-5Rα therapies: A real-world study. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1411-1413.	2.0	1
8	Comment on "Tumor-initiating cells establish an IL-33–TGF-β niche signaling loop to promote cancer progression― Science, 2021, 372, .	6.0	4
9	Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nature Communications, 2021, 12, 2574.	5.8	46
10	Overexpression of the MSK1 Kinase in Patients With Chronic Lung Allograft Dysfunction and Its Confirmed Role in a Murine Model. Transplantation, 2021, 105, 1212-1224.	0.5	2
11	Development and preclinical evaluation of a vaccine targeting ILâ€4 and ILâ€13 for the treatment of allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3553-3555.	2.7	2
12	Neutrophil-specific gain-of-function mutations in <i>Nlrp3</i> promote development of cryopyrin-associated periodic syndrome. Journal of Experimental Medicine, 2021, 218, .	4.2	29
13	The "Mast Cell and Basophil Club―of the French Society for Immunology. European Journal of Immunology, 2020, 50, 1430-1431.	1.6	0
14	lgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host Defense against Staphylococcus aureus. Immunity, 2020, 53, 793-804.e9.	6.6	38
15	Editorial: Role of Neutrophils in Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 627939.	2.2	4
16	A highly sensitive bioluminescent method for measuring allergenâ€specific IgE in microliter samples. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2952-2956.	2.7	16
17	The anti-IgE mAb omalizumab induces adverse reactions by engaging FcÎ ³ receptors. Journal of Clinical Investigation, 2020, 130, 1330-1335.	3.9	35
18	Basophil-derived tumor necrosis factor can enhance survival in a sepsis model in mice. Nature Immunology, 2019, 20, 129-140.	7.0	56

LAURENT REBER

#	Article	IF	CITATIONS
19	House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. Nature Immunology, 2019, 20, 1435-1443.	7.0	196
20	Mouse Models and Tools for the in vivo Study of Neutrophils. Frontiers in Immunology, 2019, 10, 3130.	2.2	53
21	lgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. ELife, 2019, 8, .	2.8	74
22	Late Breaking Abstract - Anti-IL-4 and anti-IL-13 dual vaccination using Kinoid technology prevents development of allergic asthma in mice. , 2019, , .		0
23	Approaches to target IgE antibodies in allergic diseases. , 2018, 191, 50-64.		40
24	Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Frontiers in Immunology, 2018, 9, 1275.	2.2	38
25	Evidence that neutrophils do not promote Echis carinatus venom-induced tissue destruction. Nature Communications, 2018, 9, 2304.	5.8	8
26	IgG subclasses determine pathways of anaphylaxis in mice. Journal of Allergy and Clinical Immunology, 2017, 139, 269-280.e7.	1.5	78
27	Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. Journal of Experimental Medicine, 2017, 214, 1249-1258.	4.2	84
28	The pathophysiology of anaphylaxis. Journal of Allergy and Clinical Immunology, 2017, 140, 335-348.	1.5	330
29	Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. Journal of Allergy and Clinical Immunology, 2017, 139, 584-596.e10.	1.5	32
30	Imaging protective mast cells in living mice during severe contact hypersensitivity. JCI Insight, 2017, 2, .	2.3	48
31	The tyrosine kinase inhibitor imatinib mesylate suppresses uric acid crystal-induced acute gouty arthritis in mice. PLoS ONE, 2017, 12, e0185704.	1.1	9
32	A TNFRSF14-FcɛRI-mast cell pathway contributes to development of multiple features of asthma pathology in mice. Nature Communications, 2016, 7, 13696.	5.8	36
33	Neutrophils are not required for resolution of acute gouty arthritis in mice. Nature Medicine, 2016, 22, 1382-1384.	15.2	18
34	Mast cells in asthma: biomarker and therapeutic target. European Respiratory Journal, 2016, 47, 1040-1042.	3.1	6
35	IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity. Journal of Allergy and Clinical Immunology, 2016, 137, 246-257.e11.	1.5	53
36	Different activation signals induce distinct mast cell degranulation strategies. Journal of Clinical Investigation, 2016, 126, 3981-3998.	3.9	285

LAURENT REBER

#	Article	IF	CITATIONS
37	Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. Journal of Clinical Investigation, 2016, 126, 4497-4515.	3.9	11
38	Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunology, 2015, 8, 444-463.	2.7	112
39	Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo. Advances in Immunology, 2015, 126, 45-127.	1.1	93
40	Analyzing the Functions of Mast Cells In Vivo Using ' Mast Cell Knock-in ' Mice. Journal of Visualized Experiments, 2015, , e52753.	0.2	17
41	Contribution of Mast Cell–Derived Interleukinâ€1β to Uric Acid Crystal–Induced Acute Arthritis in Mice. Arthritis and Rheumatology, 2014, 66, 2881-2891.	2.9	59
42	Mast Cells Contribute to Bleomycin-Induced Lung Inflammation and Injury in Mice through a Chymase/Mast Cell Protease 4–Dependent Mechanism. Journal of Immunology, 2014, 192, 1847-1854.	0.4	41
43	Targeting mast cells in inflammatory diseases. , 2014, 142, 416-435.		50
44	Type 2 Immunity Can Have a Protective Role In Host Defense Against Venoms In Mice. Journal of Allergy and Clinical Immunology, 2014, 133, AB90.	1.5	0
45	Important Role For Mast Cells But Not Basophils In An Adjuvant-Free Model Of Active Anaphylaxis In Mice. Journal of Allergy and Clinical Immunology, 2014, 133, AB62.	1.5	0
46	lgE Antibodies and FcÎμRI Are Critical For Acquired Resistance Against Honeybee Venom In Mice. Journal of Allergy and Clinical Immunology, 2014, 133, AB225.	1.5	0
47	A Beneficial Role for Immunoglobulin E in Host Defense against Honeybee Venom. Immunity, 2013, 39, 963-975.	6.6	151
48	Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. Journal of Allergy and Clinical Immunology, 2013, 132, 881-888.e11.	1.5	91
49	A Dissociated Glucocorticoid Receptor Modulator Reduces Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma. Journal of Immunology, 2012, 188, 3478-3487.	0.4	81
50	New models for analyzing mast cell functions in vivo. Trends in Immunology, 2012, 33, 613-625.	2.9	172
51	The AGC Kinase Inhibitor H89 Attenuates Airway Inflammation in Mouse Models of Asthma. PLoS ONE, 2012, 7, e49512.	1.1	19
52	Ser276 Phosphorylation of NF-kB p65 by MSK1 Controls SCF Expression in Inflammation. PLoS ONE, 2009, 4, e4393.	1.1	137
53	Stem cell factor expression, mast cells and inflammation in asthma. Fundamental and Clinical Pharmacology, 2006, 20, 21-39.	1.0	54
54	Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. European Journal of Pharmacology, 2006, 533, 327-340.	1.7	229