Enzo Lombi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8800706/enzo-lombi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126 17,598 243 72 h-index g-index citations papers 19,660 6.72 251 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
243	Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. <i>Reviews in Environmental Science and Biotechnology</i> , 2022 , 21, 53-74	13.9	1
242	Unraveling microbiomes and functions associated with strategic tillage, stubble, and fertilizer management. <i>Agriculture, Ecosystems and Environment</i> , 2022 , 323, 107686	5.7	1
241	Pesticide effects on nitrogen cycle related microbial functions and community composition. <i>Science of the Total Environment</i> , 2022 , 807, 150734	10.2	3
240	Use of X-ray tomography for examining root architecture in soils. <i>Geoderma</i> , 2022 , 405, 115405	6.7	5
239	Translocation of Foliar Absorbed Zn in Sunflower () Leaves Frontiers in Plant Science, 2022, 13, 757048	6.2	O
238	Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. <i>Journal of Experimental Botany</i> , 2021 , 72, 5079-5092	7	5
237	Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. <i>Science of the Total Environment</i> , 2021 , 770, 145354	10.2	14
236	Zinc Accumulates in the Nodes of Wheat Following the Foliar Application of Zn Oxide Nano- and Microparticles. <i>Environmental Science & Environmental S</i>	10.3	1
235	Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. <i>Nature Nanotechnology</i> , 2021 , 16, 926-932	28.7	18
234	Neutral electrolyzed oxidizing water is effective for pre-harvest decontamination of fresh produce. <i>Food Microbiology</i> , 2021 , 93, 103610	6	3
233	Development and evaluation of a new colorimetric DGT technique for the 2D visualisation of labile phosphate in soils. <i>Chemosphere</i> , 2021 , 269, 128704	8.4	2
232	Synchrotron-Based Imaging Reveals the Fate of Selenium in Striped Marsh Frog Tadpoles. <i>Environmental Science & Environmental </i>	10.3	О
231	Phosphorus speciation in the fertosphere of highly concentrated fertilizer bands. <i>Geoderma</i> , 2021 , 403, 115208	6.7	2
230	Risk assessment on-a-chip: a cell-based microfluidic device for immunotoxicity screening. <i>Nanoscale Advances</i> , 2021 , 3, 682-691	5.1	6
229	Bioimaging Techniques Reveal Foliar Phosphate Uptake Pathways and Leaf Phosphorus Status. <i>Plant Physiology</i> , 2020 , 183, 1472-1483	6.6	8
228	Methods to Visualize Elements in Plants. <i>Plant Physiology</i> , 2020 , 182, 1869-1882	6.6	15
227	Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 50, 2144-2174	11.1	13

(2019-2020)

226	Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. <i>Science of the Total Environment</i> , 2020 , 749, 142369	10.2	11
225	Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption?. <i>Physiologia Plantarum</i> , 2020 , 170, 384-397	4.6	11
224	Plant-Available Phosphorus in Highly Concentrated Fertilizer Bands: Effects of Soil Type, Phosphorus Form, and Coapplied Potassium. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 7571-	7 580	13
223	Zinc Speciation in Organic Waste Drives Its Fate in Amended Soils. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 12034-12041	10.3	6
222	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. <i>Environmental Science & Environmental S</i>	10.3	18
221	Mobility and potential bioavailability of antimony in contaminated soils: Short-term impact on microbial community and soil biochemical functioning. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 196, 110576	7	13
220	Dynamics of Lead Bioavailability and Speciation in Indoor Dust and X-ray Spectroscopic Investigation of the Link between Ingestion and Inhalation Pathways. <i>Environmental Science & Technology</i> , 2019 , 53, 11486-11495	10.3	11
219	Chemical characterisation, antibacterial activity, and (nano)silver transformation of commercial personal care products exposed to household greywater. <i>Environmental Science: Nano</i> , 2019 , 6, 3027-30	28 ¹	7
218	Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: A closed chamber experiment. <i>Science of the Total Environment</i> , 2019 , 697, 134114	10.2	28
217	Multiparameter toxicity screening on a chip: Effects of UV radiation and titanium dioxide nanoparticles on HaCaT cells. <i>Biomicrofluidics</i> , 2019 , 13, 044112	3.2	3
216	Investigating the foliar uptake of zinc from conventional and nano-formulations: a methodological study. <i>Environmental Chemistry</i> , 2019 , 16, 459	3.2	12
215	A One Health approach to managing the applications and implications of nanotechnologies in agriculture. <i>Nature Nanotechnology</i> , 2019 , 14, 523-531	28.7	64
214	Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. <i>ACS Nano</i> , 2019 , 13, 5291-5305	16.7	151
213	Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils. <i>Analytica Chimica Acta</i> , 2019 , 1057, 80-87	6.6	9
212	Understanding the interaction of gold and silver nanoparticles with natural organic matter using affinity capillary electrophoresis. <i>Environmental Science: Nano</i> , 2019 , 6, 1351-1362	7.1	5
211	Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. <i>Annals of Botany</i> , 2019 , 123, 57-68	4.1	48
210	Assessing plant-available glyphosate in contrasting soils by diffusive gradient in thin-films technique (DGT). <i>Science of the Total Environment</i> , 2019 , 646, 735-744	10.2	9
209	Soil and the intensification of agriculture for global food security. <i>Environment International</i> , 2019 , 132, 105078	12.9	217

208	Transformation of Calcium Phosphates in Alkaline Vertisols by Acidified Incubation. <i>Environmental Science & Environmental Sci</i>	10.3	4
207	, and Spectroscopic Assessment of Lead Exposure Reduction via Ingestion and Inhalation Pathways Using Phosphate and Iron Amendments. <i>Environmental Science & Discounty (March 2019)</i> , 53, 10329-1034	4 ^{†0.3}	15
206	Comparative antibacterial activities of neutral electrolyzed oxidizing water and other chlorine-based sanitizers. <i>Scientific Reports</i> , 2019 , 9, 19955	4.9	9
205	Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. <i>Environmental Science: Nano</i> , 2019 , 6, 3513-3524	7.1	54
204	Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. <i>Plant Biotechnology Journal</i> , 2019 , 17, 1514-1526	11.6	43
203	Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. <i>Journal of Experimental Botany</i> , 2018 , 69, 2717-2729	7	54
202	Microfluidic Cell Microarray Platform for High Throughput Analysis of Particle-Cell Interactions. <i>Analytical Chemistry</i> , 2018 , 90, 4338-4347	7.8	15
201	Effects of methyl jasmonate on plant growth and leaf properties. <i>Journal of Plant Nutrition and Soil Science</i> , 2018 , 181, 409-418	2.3	22
200	The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. <i>Science of the Total Environment</i> , 2018 , 627, 942-950) ^{10.2}	61
199	Methodologies and approaches for the analysis of cell-nanoparticle interactions. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2018 , 10, e1486	9.2	20
198	Temporal Evolution of Copper Distribution and Speciation in Roots of Triticum aestivum Exposed to CuO, Cu(OH), and CuS Nanoparticles. <i>Environmental Science & Environmental S</i>	10.3	27
197	Reactive gaseous mercury is generated from chloralkali factories resulting in extreme concentrations of mercury in hair of workers. <i>Scientific Reports</i> , 2018 , 8, 3675	4.9	7
196	Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. <i>Plant Physiology</i> , 2018 , 178, 507-523	6.6	82
195	Synchrotron X-ray spectroscopy for investigating vanadium speciation in marine sediment: limitations and opportunities. <i>Journal of Analytical Atomic Spectrometry</i> , 2018 , 33, 1689-1699	3.7	9
194	Absorption of foliar applied Zn is decreased in Zn deficient sunflower (Helianthus annuus) due to changes in leaf properties. <i>Plant and Soil</i> , 2018 , 433, 309-322	4.2	12
193	Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. <i>Environmental Science: Nano</i> , 2018 , 5, 2531-2544	7.1	19
192	Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 8745-8755	10.3	10
191	Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. <i>Journal of Experimental Botany</i> , 2018 , 69, 4469-4481	7	56

(2016-2017)

190	Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. <i>Nanotoxicology</i> , 2017 , 11, 150-156	5.3	20
189	Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil-Plant Systems. Journal of Environmental Quality, 2017 , 46, 1175-1189	3.4	35
188	The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. <i>Chemosphere</i> , 2017 , 169, 377-386	8.4	57
187	Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (Triticum aestivum). <i>Environmental Science & Environmental Sc</i>	10.3	97
186	Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with metal(loid)s. <i>Soil Biology and Biochemistry</i> , 2017 , 111, 25-35	7.5	32
185	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. <i>Environmental Science: Nano</i> , 2017 , 4, 448-460	7.1	66
184	Crossed flow microfluidics for high throughput screening of bioactive chemical-cell interactions. <i>Lab on A Chip</i> , 2017 , 17, 501-510	7.2	15
183	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. <i>ACS Nano</i> , 2017 , 11, 10894-10902	16.7	37
182	Phosphorus availability of sewage sludge-based fertilizers determined by the diffusive gradients in thin films (DGT) technique. <i>Journal of Plant Nutrition and Soil Science</i> , 2017 , 180, 594-601	2.3	24
181	Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties. <i>Bioresource Technology</i> , 2017 , 246, 160-167	11	35
180	Aging of Dissolved Copper and Copper-based Nanoparticles in Five Different Soils: Short-term Kinetics vs. Long-term Fate. <i>Journal of Environmental Quality</i> , 2017 , 46, 1198-1205	3.4	49
179	Single Cell Level Quantification of Nanoparticle-Cell Interactions Using Mass Cytometry. <i>Analytical Chemistry</i> , 2017 , 89, 8228-8232	7.8	21
178	Effects of changes in leaf properties mediated by methyl jasmonate (MeJA) on foliar absorption of Zn, Mn and Fe. <i>Annals of Botany</i> , 2017 , 120, 405-415	4.1	21
177	The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments. <i>Micromachines</i> , 2017 , 8, 124	3.3	15
176	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. <i>Environmental Science: Nano</i> , 2017 , 4, 448-460	7.1	15
175	Optimization of binding B-lymphocytes in a microfluidic channel: surface modification, stasis time and shear response. <i>Biofabrication</i> , 2017 , 10, 014101	10.5	10
174	Cobalamin Concentrations in Fetal Liver Show Gender Differences: A Result from Using a High-Pressure Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry as an Ultratrace Cobalt Speciation Method. <i>Analytical Chemistry</i> , 2016 , 88, 12419-12426	7.8	2
173	In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. <i>Scientific Reports</i> , 2016 , 6, 34361	4.9	59

172	Sulfur crosslinks from thermal degradation of chitosan dithiocarbamate derivatives and thermodynamic study for sorption of copper and cadmium from aqueous system. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 1050-9	5.1	14
171	Analytical characterisation of nanoscale zero-valent iron: A methodological review. <i>Analytica Chimica Acta</i> , 2016 , 903, 13-35	6.6	63
170	Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. <i>Nanotoxicology</i> , 2016 , 10, 385-90	5.3	16
169	Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. <i>Environmental Pollution</i> , 2016 , 216, 636-645	9.3	19
168	Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability. <i>Environmental Science & Environmental </i>	10.3	75
167	Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging. <i>Plant, Cell and Environment</i> , 2016 , 39, 1835-47	8.4	51
166	Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. <i>Scientific Reports</i> , 2016 , 6, 19792	4.9	181
165	Quantitative multimodal analyses of silver nanoparticle-cell interactions: Implications for cytotoxicity. <i>NanoImpact</i> , 2016 , 1, 29-38	5.6	17
164	Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. <i>Analyst, The,</i> 2016 , 141, 3657-67	5	8
163	XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution. <i>Environmental Science & Environmental </i>	10.3	36
162	Nanotechnology: A New Opportunity in Plant Sciences. <i>Trends in Plant Science</i> , 2016 , 21, 699-712	13.1	481
161	Unraveling the Complexity in the Aging of Nanoenhanced Textiles: A Comprehensive Sequential Study on the Effects of Sunlight and Washing on Silver Nanoparticles. <i>Environmental Science & Technology</i> , 2016 , 50, 5790-9	10.3	41
160	Unraveling the Complex Behavior of AgNPs Driving NP-Cell Interactions and Toxicity to Algal Cells. <i>Environmental Science & Environmental Science & En</i>	10.3	24
159	Arsenic concentrations and species in three hydrothermal vent worms, Ridgeia piscesae, Paralvinella sulficola and Paralvinella palmiformis. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 2016 , 116, 41-48	2.5	3
158	Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films. <i>Environmental Science & Environmental Scienc</i>	10.3	88
157	Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations. <i>Nanotoxicology</i> , 2015 , 9, 1005-12	5.3	41
156	Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. <i>Nanotoxicology</i> , 2015 , 9, 1041-9	5.3	8o
155	Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. <i>Journal of Experimental Botany</i> , 2015, 66, 4795-806	7	35

154	Microelemental characterisation of Aboriginal Australian natural Fe oxide pigments. <i>Analytical Methods</i> , 2015 , 7, 7363-7380	3.2	7
153	Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. <i>Metallomics</i> , 2015 , 7, 1056-66	4.5	17
152	Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Research, 2015, 77, 72-84	12.5	84
151	Changes in soil bacterial communities and diversity in response to long-term silver exposure. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	47
150	Bridging the divide between human and environmental nanotoxicology. <i>Nature Nanotechnology</i> , 2015 , 10, 835-44	28.7	62
149	In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments. <i>Environmental Science & Environmental Sc</i>	10.3	28
148	Aggregation behaviour of engineered nanoparticles in natural waters: characterising aggregate structure using on-line laser light scattering. <i>Journal of Hazardous Materials</i> , 2015 , 284, 190-200	12.8	52
147	In situ chemical transformations of silver nanoparticles along the water-sediment continuum. <i>Environmental Science & Environmental Science & Environm</i>	10.3	33
146	Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. <i>Environmental Science: Nano</i> , 2015 , 2, 340-351	7.1	65
145	Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques. <i>Journal of Environmental Management</i> , 2015 , 159, 135-142	7.9	9
144	Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing. <i>Environmental Pollution</i> , 2015 , 205, 78-86	9.3	38
143	Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment. <i>Plant Physiology</i> , 2015 , 169, 2006-20	6.6	39
142	Identification of the primary lesion of toxic aluminum in plant roots. <i>Plant Physiology</i> , 2015 , 167, 1402-1	1 6.6	145
141	Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique. <i>Environmental Pollution</i> , 2015 , 199, 244-52	9.3	4
140	Distribution of Minerals in Wheat Grains (Triticum aestivum L.) and in Roller Milling Fractions Affected by Pearling. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 1276-1285	5.7	39
139	Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. <i>New Phytologist</i> , 2014 , 201, 1251-1262	9.8	69
138	Imaging element distribution and speciation in plant cells. <i>Trends in Plant Science</i> , 2014 , 19, 183-92	13.1	113
137	Leachability, bioaccessibility and plant availability of trace elements in contaminated soils treated with industrial by-products and subjected to oxidative/reductive conditions. <i>Geoderma</i> , 2014 , 214-215, 204-212	6.7	39

136	Can earthworm-secreted calcium carbonate immobilise Zn in contaminated soils?. <i>Soil Biology and Biochemistry</i> , 2014 , 74, 1-10	7.5	17
135	Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry. <i>Journal of Cereal Science</i> , 2014 , 59, 173-180	3.8	54
134	Fate and lability of silver in soils: effect of ageing. Environmental Pollution, 2014, 191, 151-7	9.3	53
133	Silver speciation and release in commercial antimicrobial textiles as influenced by washing. <i>Chemosphere</i> , 2014 , 111, 352-8	8.4	87
132	Maia X-ray fluorescence imaging: Capturing detail in complex natural samples. <i>Journal of Physics:</i> Conference Series, 2014 , 499, 012002	0.3	119
131	Speciation mapping of environmental samples using XANES imaging. <i>Environmental Chemistry</i> , 2014 , 11, 341	3.2	45
130	Hard X-ray synchrotron biogeochemistry: piecing together the increasingly detailed puzzle. <i>Environmental Chemistry</i> , 2014 , 11, 1	3.2	4
129	The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 268-77	3.8	23
128	Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review. <i>Analytica Chimica Acta</i> , 2014 , 822, 1-22	6.6	127
127	Surface immobilization of engineered nanomaterials for in situ study of their environmental transformations and fate. <i>Environmental Science & Environmental & Environ</i>	10.3	26
126	Application of MicroResp[for soil ecotoxicology. Environmental Pollution, 2013, 179, 177-84	9.3	18
125	Effects of chemical amendments on the lability and speciation of metals in anaerobically digested biosolids. <i>Environmental Science & Environmental Sc</i>	10.3	19
124	Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 13822-30	10.3	220
123	Synthesis and Characterization of Thiolated Chitosan Beads for Removal of Cu(II) and Cd(II) from Wastewater. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	28
122	Remediation of Site Contamination. Water, Air, and Soil Pollution, 2013, 224, 1	2.6	
121	Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. <i>Environmental Pollution</i> , 2013 , 176, 193-7	9.3	169
120	Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth. <i>Physiologia Plantarum</i> , 2013 , 147, 453-64	4.6	19
119	Sulfur-Containing Chitin and Chitosan Derivatives as Trace Metal Adsorbents: A Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2013 , 43, 1741-1794	11.1	36

118	Aging of nickel added to soils as predicted by soil pH and time. Chemosphere, 2013, 92, 962-8	8.4	42
117	Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	60
116	Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant. <i>Plant and Soil</i> , 2013 , 372, 125-136	4.2	17
115	Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. <i>Water Research</i> , 2013 , 47, 4585-99	12.5	37
114	Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. <i>Science of the Total Environment</i> , 2013 , 463-464, 131-9	10.2	35
113	In situ speciation and distribution of toxic selenium in hydrated roots of cowpea. <i>Plant Physiology</i> , 2013 , 163, 407-18	6.6	17
112	A radio-isotopic dilution technique for functional characterisation of the associations between inorganic contaminants and water-dispersible naturally occurring soil colloids. <i>Environmental Chemistry</i> , 2013 , 10, 341	3.2	8
111	Mapping element distributions in plant tissues using synchrotron X-ray fluorescence techniques. <i>Methods in Molecular Biology</i> , 2013 , 953, 143-59	1.4	7
110	A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids. <i>Environmental Pollution</i> , 2012 , 166, 57-64	9.3	48
109	A review of recent developments in the speciation and location of arsenic and selenium in rice grain. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 3275-86	4.4	73
108	Grain accumulation of selenium species in rice (Oryza sativa L.). <i>Environmental Science & Environmental Science & Environment</i>	10.3	59
107	Assessing the plant availability of manganese in soils using Diffusive Gradients in Thin films (DGT). <i>Geoderma</i> , 2012 , 183-184, 92-99	6.7	26
106	Losses of essential mineral nutrients by polishing of rice differ among genotypes due to contrasting grain hardness and mineral distribution. <i>Journal of Cereal Science</i> , 2012 , 56, 307-315	3.8	49
105	Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. <i>Environmental Science & Environmental Science & Env</i>	10.3	175
104	Characterization of leached phosphorus from soil, manure, and manure-amended soil by physical and chemical fractionation and Diffusive Gradients in Thin films (DGT). <i>Environmental Science & Technology</i> , 2012 , 46, 10564-71	10.3	26
103	The availability of copper in soils historically amended with sewage sludge, manure, and compost. <i>Journal of Environmental Quality</i> , 2012 , 41, 506-14	3.4	31
102	Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 3263-73	4.4	121

100	Lead, antimony and arsenic in dissolved and colloidal fractions from an amended shooting-range soil as characterised by multi-stage tangential ultrafiltration and centrifugation. <i>Environmental Chemistry</i> , 2012 , 9, 462	3.2	14
99	Evidence for effects of manufactured nanomaterials on crops is inconclusive. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E3336; author reply E3337	11.5	16
98	Examination of the distribution of arsenic in hydrated and fresh cowpea roots using two- and three-dimensional techniques. <i>Plant Physiology</i> , 2012 , 159, 1149-58	6.6	39
97	Manganese Toxicity in Barley is Controlled by Solution Manganese and Soil Manganese Speciation. <i>Soil Science Society of America Journal</i> , 2012 , 76, 399-407	2.5	24
96	A new method for determination of potassium in soils using diffusive gradients in thin films (DGT). <i>Environmental Chemistry</i> , 2012 , 9, 14	3.2	12
95	X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids. <i>Environmental Science & Environmental Science & Environm</i>	10.3	65
94	Hair analysis as a biomonitor for toxicology, disease and health status. <i>Chemical Society Reviews</i> , 2011 , 40, 3915-40	58.5	124
93	Applicability of diffusive gradients in thin films for measuring Mn in soils and freshwater sediments. <i>Analytical Chemistry</i> , 2011 , 83, 8984-91	7.8	8
92	Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: introduction to the special section. <i>Journal of Environmental Quality</i> , 2011 , 40, 659-66	3.4	21
91	Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. <i>PLoS ONE</i> , 2011 , 6, e24476	3.7	260
90	Phloem transport of arsenic species from flag leaf to grain during grain filling. <i>New Phytologist</i> , 2011 , 192, 87-98	9.8	146
89	In situ analysis of metal(loid)s in plants: State of the art and artefacts. <i>Environmental and Experimental Botany</i> , 2011 , 72, 3-17	5.9	120
88	The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. <i>Plant and Soil</i> , 2011 , 346, 167-180	4.2	110
87	Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 1637-44	4.4	84
86	Megapixel imaging of (micro)nutrients in mature barley grains. <i>Journal of Experimental Botany</i> , 2011 , 62, 273-82	7	113
85	In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. <i>Plant Physiology</i> , 2011 , 156, 663-73	6.6	118
84	Fast x-ray fluorescence microtomography of hydrated biological samples. <i>PLoS ONE</i> , 2011 , 6, e20626	3.7	81
83	Selenium speciation in soil and rice: influence of water management and Se fertilization. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 11837-43	5.7	101

82	NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytologist, 2010, 185, 434-45	9.8	115
81	Grain unloading of arsenic species in rice. <i>Plant Physiology</i> , 2010 , 152, 309-19	6.6	231
80	Chemical behavior of fluid and granular Mn and Zn fertilisers in alkaline soils. <i>Soil Research</i> , 2010 , 48, 238	1.8	13
79	Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity. <i>Environmental Pollution</i> , 2010 , 158, 2110-6	9.3	44
78	Metalloids, soil chemistry and the environment. <i>Advances in Experimental Medicine and Biology</i> , 2010 , 679, 33-44	3.6	13
77	Speciation and isotopic exchangeability of nickel in soil solution. <i>Journal of Environmental Quality</i> , 2009 , 38, 485-92	3.4	24
76	Critical review perspective: elemental speciation analysis methods in environmental chemistry - moving towards methodological integration. <i>Environmental Chemistry</i> , 2009 , 6, 275	3.2	76
75	Selenium characterization in the global rice supply chain. <i>Environmental Science & Environmental Scie</i>	10.3	162
74	Exchangeability of orthophosphate and pyrophosphate in soils: a double isotopic labelling study. <i>Plant and Soil</i> , 2009 , 314, 243-252	4.2	10
73	Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. <i>Plant and Soil</i> , 2009 , 320, 1-35	4.2	193
72	Speciation and distribution of arsenic and localization of nutrients in rice grains. <i>New Phytologist</i> , 2009 , 184, 193-201	9.8	202
71	Speciation and localization of arsenic in white and brown rice grains. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 1051-7	10.3	284
70	Chapter 6 Advances in Isotopic Dilution Techniques in Trace Element Research. <i>Advances in Agronomy</i> , 2008 , 99, 289-343	7.7	39
69	Chapter 7 Frontiers in assessing the role of chemical speciation and natural attenuation on the Bioavailability of Contaminants in the Terrestrial Environment. <i>Developments in Soil Science</i> , 2008 , 99-1	3 ^{4.3}	1
68	Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil. <i>Soil Science Society of America Journal</i> , 2008 , 72, 98-110	2.5	19
67	Isotopic Exchangeability, Hydrolysis and Mobilization Reactions of Pyrophosphate in Soil. <i>Soil Science Society of America Journal</i> , 2008 , 72, 1337-1343	2.5	6
66	Polyphosphate Speciation for Soil and Fertilizer Analysis. <i>Communications in Soil Science and Plant Analysis</i> , 2007 , 38, 2445-2460	1.5	4
65	Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. <i>Plant and Soil</i> , 2007 , 290, 51-60	4.2	43

64	Polyphosphate-fertilizer solution stability with time, temperature, and pH. <i>Journal of Plant Nutrition and Soil Science</i> , 2007 , 170, 387-391	2.3	38
63	Pyrophosphate and orthophosphate addition to soils: sorption, cation concentrations, and dissolved organic carbon. <i>Soil Research</i> , 2007 , 45, 237	1.8	11
62	Long-term aging of copper added to soils. Environmental Science & Environmenta	10.3	169
61	Stable isotope techniques for assessing labile Cu in soils: development of an L-value procedure, its application, and reconciliation with E values. <i>Environmental Science & Environmental Science & E</i>	10.3	24
60	Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. <i>Environmental Pollution</i> , 2006 , 141, 115-25	9.3	246
59	Density Changes around Phosphorus Granules and Fluid Bands in a Calcareous Soil. <i>Soil Science Society of America Journal</i> , 2006 , 70, 960-966	2.5	33
58	Speciation and Distribution of Phosphorus in a Fertilized Soil. <i>Soil Science Society of America Journal</i> , 2006 , 70, 2038-2048	2.5	87
57	Hydrolysis of Pyrophosphate in a Highly Calcareous Soil. <i>Soil Science Society of America Journal</i> , 2006 , 70, 856-862	2.5	26
56	Determination of labile Cu in soils and isotopic exchangeability of colloidal Cu complexes. <i>European Journal of Soil Science</i> , 2006 , 57, 147-153	3.4	20
55	Short-term natural attenuation of copper in soils: effects of time, temperature, and soil characteristics. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 652-8	3.8	92
54	Tolerance of nitrifying bacteria to copper and nickel. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2000-5	3.8	27
53	Natural Attenuation 2006 , 173-195		
52	Biological Assessmento f Natural Attenuation of Metals in Soil 2006 , 41-56		
51	An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. <i>Environmental Pollution</i> , 2005 , 138, 34-45	9.3	199
50	Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. <i>Soil Research</i> , 2005 , 43, 203	1.8	45
49	Effect of toxic cations on copper rhizotoxicity in wheat seedlings. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 372-8	3.8	25
48	Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and non-calcareous soils under laboratory conditions. <i>Plant and Soil</i> , 2005 , 269, 25-34	4.2	39
47	Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. <i>Plant and Soil</i> , 2005 , 271, 205-218	4.2	89

(2002-2005)

29

Food and Agriculture, **2002**, 82, 1160-1165

Model development for simulating the bioavailability of Ni to the hyperaccumulator Thlaspi 46 goesingense 2005, 391-418 Mobility and Lability of Phosphorus from Granular and Fluid Monoammonium Phosphate Differs in 68 45 2.5 a Calcareous Soil. Soil Science Society of America Journal, 2004, 68, 682-689 Root and Rhizosphere Processes in Metal Hyperaccumulation and Phytoremediation Technology 11 44 2004, 313-344 Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS. 43 4.4 39 Analytical and Bioanalytical Chemistry, 2004, 380, 789-97 Determination of Tl(I) and Tl(III) by IC-ICP-MS and application to Tl speciation analysis in the Tl 42 42 hyperaccumulator plant Iberis intermedia. Journal of Analytical Atomic Spectrometry, 2004, 19, 757-761 $^{3.7}$ Coupling speciation and isotope dilution techniques to study arsenic mobilization in the 41 10.3 55 environment. Environmental Science & Environmental Science & Technology, 2004, 38, 1794-8 Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients 126 40 10.3 in thin films. Environmental Science & Environmental & In vivo synchrotron study of thallium speciation and compartmentation in Iberis intermedia. 39 10.3 92 Environmental Science & Technology, **2004**, 38, 5095-100 Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated 38 3.4 79 soil. Journal of Environmental Quality, 2004, 33, 902-10 Metal Bioaccumulation and Toxicity in Soils Why Bother with Speciation?. Australian Journal of 1.2 37 99 Chemistry, 2003, 56, 77 Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal 86 36 2.3 of Plant Nutrition and Soil Science, 2003, 166, 191-196 Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi 35 4.2 310 caerulescens. Plant and Soil, 2003, 249, 37-43 Salinity induced differences in growth, ion distribution and partitioning in barley between the 86 34 4.2 cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil, 2003, 250, 183-191 Comparison of toxicity of zinc for soil microbial processes between laboratory-contamined and 3.8 58 33 polluted field soils. Environmental Toxicology and Chemistry, 2003, 22, 2592-8 Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New 9.8 32 119 Phytologist, 2003, 158, 279-285 Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques. Environmental 167 10.3 31 Science & amp; Technology, 2003, 37, 979-84 Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves. 30 48 Agronomy for Sustainable Development, 2003, 23, 705-710

Evidence of low selenium concentrations in UK bread-making wheat grain. Journal of the Science of

4.3

88

28	Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. <i>New Phytologist</i> , 2002 , 156, 195-203	9.8	256
27	Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. <i>Plant Physiology</i> , 2002 , 128, 1359-67	6.6	273
26	Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. <i>Journal of Experimental Botany</i> , 2002 , 53, 535-43	7	281
25	Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. <i>Journal of Plant Nutrition and Soil Science</i> , 2002 , 165, 221	2.3	74
24	Phytoremediation of metals, metalloids, and radionuclides. <i>Advances in Agronomy</i> , 2002 , 75, 1-56	7.7	327
23	In situ fixation of metals in soils using bauxite residue: chemical assessment. <i>Environmental Pollution</i> , 2002 , 118, 435-43	9.3	269
22	In situ fixation of metals in soils using bauxite residue: biological effects. <i>Environmental Pollution</i> , 2002 , 118, 445-52	9.3	128
21	Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils 2002 , 207-2	214	8
20	Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate. <i>Journal of Plant Nutrition and Soil Science</i> , 2001 , 164, 615-621	2.3	84
19	Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. <i>Journal of Environmental Quality</i> , 2001 , 30, 1919-26	3.4	401
18	Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. <i>New Phytologist</i> , 2001 , 149, 53-60	9.8	241
17	Whatß new about cadmium hyperaccumulation?. <i>New Phytologist</i> , 2001 , 149, 2-3	9.8	28
16	Arsenic fractionation in soils using an improved sequential extraction procedure. <i>Analytica Chimica Acta</i> , 2001 , 436, 309-323	6.6	890
15	Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. <i>Plant and Soil</i> , 2001 , 232, 207-214	4.2	365
14	Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. <i>Journal of Experimental Botany</i> , 2001 , 52, 2291-300	7	297
13	Molybdenum sequestration in Brassica species. A role for anthocyanins?. <i>Plant Physiology</i> , 2001 , 126, 1391-402	6.6	135
12	Leaching of heavy metals from contaminated soils using EDTA. <i>Environmental Pollution</i> , 2001 , 113, 111	- 29 13	391
11	Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. <i>New Phytologist</i> , 2000 , 145, 11-20	9.8	299

LIST OF PUBLICATIONS

10	Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. <i>Plant, Cell and Environment</i> , 2000 , 23, 507-514	1	278
9	Sequentially Extracted Arsenic from Different Size Fractions of Contaminated Soils. <i>Water, Air, and Soil Pollution</i> , 2000 , 124, 319-332	6	107
8	Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. <i>Planta</i> , 2000 , 212, 75-84	7	573
7	Biogeochemical Processes in the Rhizosphere: Role in Phytoremediation of Metal-Polluted Soils 1999 , 273-303		51
6	Arsenic adsorption by soils and iron-oxide-coated sand: kinetics and reversibility. <i>Journal of Plant Nutrition and Soil Science</i> , 1999 , 162, 451-456	3	57
5	Determination of mobile heavy metal fraction in soil: Results of a pot experiment with sewage sludge. <i>Communications in Soil Science and Plant Analysis</i> , 1998 , 29, 2545-2556	5	31
4	Mobility of heavy metals in soil and their uptake by sunflowers grown at different contamination levels. <i>Agronomy for Sustainable Development</i> , 1998 , 18, 361-371		15
3	Heavy metal content and mutagenic activity, evaluated by Vicia faba micronucleus test, of Tiber river sediments. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 1997 , 393, 17-21 ³		43
2	Foliar and soil uptake of 134Cs and 85Sr by grape vines. <i>Science of the Total Environment</i> , 1997 , 207, 157-69	42	35
1	Probing the nature of soil organic matter. <i>Critical Reviews in Environmental Science and Technology</i> ,1-22 ₁₁	.1	4