Kalliopi Marinou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800705/publications.pdf

Version: 2024-02-01

45 papers

9,137 citations

30 h-index 264894 42 g-index

45 all docs

45 docs citations

times ranked

45

9809 citing authors

#	Article	IF	CITATIONS
1	Acute myelopathies associated to SARS-CoV-2 infection: Viral or immune-mediated damage?. Travel Medicine and Infectious Disease, 2021, 40, 102000.	1.5	11
2	Clinical features and outcomes of the flail arm and flail leg and pure lower motor neuron MND variants: a multicentre Italian study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1001-1003.	0.9	14
3	Comparative Analysis of C9orf72 and Sporadic Disease in a Large Multicenter ALS Population: The Effect of Male Sex on Survival of C9orf72 Positive Patients. Frontiers in Neuroscience, 2019, 13, 485.	1.4	35
4	Information-domain method for the quantification of the complexity of the sympathetic baroreflex regulation in healthy subjects and amyotrophic lateral sclerosis patients. Physiological Measurement, 2019, 40, 034004.	1.2	4
5	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
6	Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2019, 18, 155-164.	4.9	63
7	Cardiovascular diseases may play a negative role in the prognosis of amyotrophic lateral sclerosis. European Journal of Neurology, 2018, 25, 861-868.	1.7	29
8	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
9	Rapamycin treatment for amyotrophic lateral sclerosis. Medicine (United States), 2018, 97, e11119.	0.4	96
10	Nonâ€motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathology and Applied Neurobiology, 2017, 43, 119-132.	1.8	45
11	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.5	82
12	Comorbidity of dementia with amyotrophic lateral sclerosis (ALS): insights from a large multicenter Italian cohort. Journal of Neurology, 2017, 264, 2224-2231.	1.8	19
13	Factors predicting survival in ALS: a multicenter Italian study. Journal of Neurology, 2017, 264, 54-63.	1.8	96
14	Influence of cigarette smoking on ALS outcome: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1229-1233.	0.9	37
15	TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.	1.5	40
16	Comparison between K-nearest-neighbor approaches for conditional entropy estimation: Application to the assessment of the cardiac control in amyotrophic lateral sclerosis patients., 2016, 2016, 2933-2936.		0
17	ATNX2 is not a regulatory gene in Italian amyotrophic lateral sclerosis patients with C9ORF72 GGGGCC expansion. Neurobiology of Aging, 2016, 39, 218.e5-218.e8.	1.5	6
18	HFE p.H63D polymorphism does not influence ALS phenotype and survival. Neurobiology of Aging, 2015, 36, 2906.e7-2906.e11.	1.5	8

#	Article	IF	CITATIONS
19	Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 879-886.	0.9	32
20	Cardiovascular neural regulation is impaired in amyotrophic lateral sclerosis patients. A study by spectral and complexity analysis of cardiovascular oscillations. Physiological Measurement, 2015, 36, 659-670.	1.2	26
21	CHCH10 mutations in an Italian cohort of familial and sporadic amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2015, 36, 1767.e3-1767.e6.	1.5	44
22	ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry. Neurobiology of Aging, 2015, 36, 2906.e1-2906.e5.	1.5	19
23	Amyotrophic Lateral Sclerosis Outcome Measures and the Role of Albumin and Creatinine. JAMA Neurology, 2014, 71, 1134.	4.5	150
24	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	7.1	398
25	Genetic counselling in ALS: facts, uncertainties and clinical suggestions. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 478-485.	0.9	99
26	Cardiac neural regulation involvement in patients with amyotrophic lateral sclerosis. , 2014, , .		0
27	Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 397-405.	1.1	68
28	C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population. Neurobiology of Aging, 2012, 33, 1848.e15-1848.e20.	1.5	76
29	Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGCC hexanucleotide repeat expansion of C9ORF72. Brain, 2012, 135, 784-793.	3.7	182
30	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	4.9	1,039
31	FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2011, 32, 550.e1-550.e4.	1.5	79
32	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	3.8	3,833
33	Amyotrophic Lateral Sclerosis Multiprotein Biomarkers in Peripheral Blood Mononuclear Cells. PLoS ONE, 2011, 6, e25545.	1.1	123
34	Large Proportion of Amyotrophic Lateral Sclerosis Cases in Sardinia Due to a Single Founder Mutation of the TARDBP Gene. Archives of Neurology, 2011, 68, 594.	4.9	104
35	Lithium carbonate in amyotrophic lateral sclerosis. Neurology, 2010, 75, 619-625.	1.5	90
36	Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS. Neuron, 2010, 68, 857-864.	3.8	1,100

3

#	Article	IF	CITATIONS
37	Nitroproteomics of Peripheral Blood Mononuclear Cells from Patients and a Rat Model of ALS. Antioxidants and Redox Signaling, 2009, 11, 1559-1567.	2.5	35
38	A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2009, 18, 1524-1532.	1.4	106
39	Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology, 2009, 73, 1681-1685.	1.5	142
40	Severe recurrent myelitis in patients with hepatitis C virus infection. Neurology, 2007, 68, 468-469.	1.5	32
41	Paraneoplastic brainstem encephalitis in a patient with malignant fibrous histiocytoma and atypical anti-neuronal antibodies. Journal of Neurology, 2004, 251, 1415-1417.	1.8	6
42	Proximal myotonic myopathy: a syndrome with a favourable prognosis?. Journal of the Neurological Sciences, 2002, 193, 89-96.	0.3	35
43	Effectiveness of intravenous immunoglobulin treatment in adult patients with steroid-resistant monophasic or recurrent acute disseminated encephalomyelitis. Journal of Neurology, 2002, 249, 100-104.	1.8	91
44	Paraneoplastic "rubral―tremor: A case report. Movement Disorders, 1998, 13, 612-614.	2.2	8
45	QT Interval Variability and QT-HP Coupling Strength in Amyotrophic Lateral Sclerosis Patients. , 0, , .		O