
Vishwanath R Iyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation. PLoS Biology, 2008, 6, e65.	5.6	353
2	High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Research, 2011, 21, 456-464.	5.5	286
3	Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 2016, 7, 10798.	12.8	166
4	Widespread Misinterpretable ChIP-seq Bias in Yeast. PLoS ONE, 2013, 8, e83506.	2.5	126
5	Synthetic evolutionary origin of a proofreading reverse transcriptase. Science, 2016, 352, 1590-1593.	12.6	119
6	Simultaneous mapping of transcript ends at single-nucleotide resolution and identification of widespread promoter-associated non-coding RNA governed by TATA elements. Nucleic Acids Research, 2014, 42, 3736-3749.	14.5	93
7	Global Transcriptional Profiling Reveals Distinct Functions of Thymic Stromal Subsets and Age-Related Changes during Thymic Involution. Cell Reports, 2014, 9, 402-415.	6.4	87
8	Quantitative Genetics of CTCF Binding Reveal Local Sequence Effects and Different Modes of X-Chromosome Association. PLoS Genetics, 2014, 10, e1004798.	3.5	55
9	Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics, 2017, 18, 538.	2.8	51
10	Nucleosome positioning: bringing order to the eukaryotic genome. Trends in Cell Biology, 2012, 22, 250-256.	7.9	50
11	A Myc–microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Research, 2013, 41, 2239-2254.	14.5	49
12	Bright/Arid3A Acts as a Barrier to Somatic Cell Reprogramming through Direct Regulation of Oct4, Sox2, and Nanog. Stem Cell Reports, 2014, 2, 26-35.	4.8	47
13	Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data. PeerJ, 2018, 6, e5362.	2.0	42
14	Bivalent Chromatin Domains in Glioblastoma Reveal a Subtype-Specific Signature of Glioma Stem Cells. Cancer Research, 2018, 78, 2463-2474.	0.9	40
15	Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E577-E586.	7.1	36
16	The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes. Nucleic Acids Research, 2017, 45, 7180-7190.	14.5	35
17	The Determinants of Directionality in Transcriptional Initiation. Trends in Genetics, 2016, 32, 322-333.	6.7	31
18	The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription. Nucleic Acids Research, 2020, 48, 157-170.	14.5	28

VISHWANATH R IYER

#	Article	IF	CITATIONS
19	Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics and Chromatin, 2014, 7, 32.	3.9	25
20	miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing. BMC Genomics, 2015, 16, 40.	2.8	21
21	MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes. PLoS ONE, 2015, 10, e0126535.	2.5	20
22	Identification and removal of sequencing artifacts produced by mispriming during reverse transcription in multiple RNA-seq technologies. Rna, 2018, 24, 1266-1274.	3.5	19
23	An eQTL analysis of the human glioblastoma multiforme genome. Genomics, 2014, 103, 252-263.	2.9	14
24	MicroRNAs reinforce repression of PRC2 transcriptional targets independently and through a feed-forward regulatory network. Genome Research, 2019, 29, 184-192.	5.5	14
25	<i>ELF4</i> Is a Target of miR-124 and Promotes Neuroblastoma Proliferation and Undifferentiated State. Molecular Cancer Research, 2020, 18, 68-78.	3.4	14
26	Emerging Epigenetic Therapies for Brain Tumors. NeuroMolecular Medicine, 2022, 24, 41-49.	3.4	7
27	PRC2 activates interferon-stimulated genes indirectly by repressing miRNAs in glioblastoma. PLoS ONE, 2019, 14, e0222435.	2.5	5
28	The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription. Current Genetics, 2020, 66, 939-944.	1.7	5
29	Exploring the post-transcriptional RNA world with DNA microarrays. Trends in Biotechnology, 2004, 22, 498-500.	9.3	2
30	Systematic profiling of cellular phenotypes with spotted cell microarrays reveals new mating pheromone response genes. FASEB Journal, 2006, 20, A928.	0.5	1
31	Systematic profiling of cellular phenotypes and gene function using spotted cellular microarrays. FASEB Journal, 2006, 20, LB61.	0.5	0
32	Emerging Frontiers of Therapeutic Strategies for Brain Tumors: A NeuroMolecular Medicine Special Issue. NeuroMolecular Medicine, 2022, 24, 1-2.	3.4	0
33	Abstract 16047: Novel Association of Polymorphic Genetic Variants With Baseline PR Interval in Patients With Atrial Fibrillation: New Directions From a Prospective Study (DECAF). Circulation, 2015, 132	1.6	Ο