Kyung Joo Kwon-Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800287/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryptococcus neoformans Overcomes Stress of Azole Drugs by Formation of Disomy in Specific Multiple Chromosomes. PLoS Pathogens, 2010, 6, e1000848.	2.1	380
2	Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019760-a019760.	2.9	374
3	Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen?. PLoS Pathogens, 2013, 9, e1003743.	2.1	300
4	(1557) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon, 2002, 51, 804-806.	0.4	281
5	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	1.3	274
6	Taxonomy of Fungi Causing Mucormycosis and Entomophthoramycosis (Zygomycosis) and Nomenclature of the Disease: Molecular Mycologic Perspectives. Clinical Infectious Diseases, 2012, 54, S8-S15.	2.9	254
7	Cryptococcal Yeast Cells Invade the Central Nervous System via Transcellular Penetration of the Blood-Brain Barrier. Infection and Immunity, 2004, 72, 4985-4995.	1.0	228
8	Gliotoxin Is a Virulence Factor of Aspergillus fumigatus: gliP Deletion Attenuates Virulence in Mice Immunosuppressed with Hydrocortisone. Eukaryotic Cell, 2007, 6, 1562-1569.	3.4	225
9	Do major species concepts support one, two or more species withinCryptococcus neoformans?. FEMS Yeast Research, 2006, 6, 574-587.	1.1	222
10	<i>Cryptococcus neoformans</i> Strains and Infection in Apparently Immunocompetent Patients, China. Emerging Infectious Diseases, 2008, 14, 755-762.	2.0	204
11	Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies Are a Risk Factor for Central Nervous System Infection by Cryptococcus gattii in Otherwise Immunocompetent Patients. MBio, 2014, 5, e00912-14.	1.8	189
12	Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Molecular Microbiology, 2007, 64, 614-629.	1.2	183
13	Aspergillus fumigatus and Related Species. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019786-a019786.	2.9	180
14	Human Polymorphonuclear Leukocytes Inhibit <i>Aspergillus fumigatus</i> Conidial Growth by Lactoferrin-Mediated Iron Depletion. Journal of Immunology, 2007, 178, 6367-6373.	0.4	164
15	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	13.7	157
16	Heteroresistance to Fluconazole in <i>Cryptococcus neoformans</i> Is Intrinsic and Associated with Virulence. Antimicrobial Agents and Chemotherapy, 2009, 53, 2804-2815.	1.4	141
17	Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight, 2016, 1, e89890.	2.3	141
18	Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils. PLoS ONE, 2008, 3, e2655.	1.1	124

Kyung Joo Kwon-Chung

#	Article	IF	CITATIONS
19	The Primary Target Organ of Cryptococcus gattii Is Different from That of Cryptococcus neoformans in a Murine Model. MBio, 2012, 3, .	1.8	123
20	What do we know about the role of gliotoxin in the pathobiology of <i>Aspergillus fumigatus?</i> . Medical Mycology, 2009, 47, S97-S103.	0.3	120
21	Aspergillus fumigatus Conidial Melanin Modulates Host Cytokine Response. Immunobiology, 2010, 215, 915-920.	0.8	119
22	Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response. Infection and Immunity, 2014, 82, 3141-3153.	1.0	113
23	Identification of a Cryptococcus neoformans Cytochrome P450 Lanosterol 14α-Demethylase (Erg11) Residue Critical for Differential Susceptibility between Fluconazole/Voriconazole and Itraconazole/Posaconazole. Antimicrobial Agents and Chemotherapy, 2012, 56, 1162-1169.	1.4	109
24	Role of <i>laeA</i> in the Regulation of <i>alb1</i> , <i>gliP</i> , Conidial Morphology, and Virulence in <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2007, 6, 1552-1561.	3.4	104
25	Invasive Aspergillosis Due to <i>Neosartorya udagawae</i> . Clinical Infectious Diseases, 2009, 49, 102-111.	2.9	103
26	Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cellular Microbiology, 2008, 10, 1313-1326.	1.1	95
27	Cryptococcus neoformans-Derived Microvesicles Enhance the Pathogenesis of Fungal Brain Infection. PLoS ONE, 2012, 7, e48570.	1.1	93
28	Azole Heteroresistance in Cryptococcus neoformans: Emergence of Resistant Clones with Chromosomal Disomy in the Mouse Brain during Fluconazole Treatment. Antimicrobial Agents and Chemotherapy, 2013, 57, 5127-5130.	1.4	90
29	Identification and Characterization of CPS1 as a Hyaluronic Acid Synthase Contributing to the Pathogenesis of Cryptococcus neoformans Infection. Eukaryotic Cell, 2007, 6, 1486-1496.	3.4	88
30	Prevalence of the VNIc genotype of Cryptococcus neoformans in non-HIV-associated cryptococcosis in the Republic of Korea. FEMS Yeast Research, 2010, 10, 769-778.	1.1	87
31	TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Molecular Microbiology, 2007, 64, 591-601.	1.2	86
32	Genetic Relatedness versus Biological Compatibility between Aspergillus fumigatus and Related Species. Journal of Clinical Microbiology, 2014, 52, 3707-3721.	1.8	79
33	Hyaluronic Acid Receptor CD44 Deficiency Is Associated with Decreased Cryptococcus neoformans Brain Infection. Journal of Biological Chemistry, 2012, 287, 15298-15306.	1.6	77
34	The structure of the capsular polysaccharide from crytococcus neoformans serotype d. Carbohydrate Research, 1979, 73, 183-192.	1.1	75
35	Cobalt chloride, a hypoxiaâ€mimicking agent, targets sterol synthesis in the pathogenic fungus <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2007, 65, 1018-1033.	1.2	74
36	Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans. MBio, 2013, 4, e00220-13.	1.8	73

Kyung Joo Kwon-Chung

#	Article	IF	CITATIONS
37	Aneuploidy and Drug Resistance in Pathogenic Fungi. PLoS Pathogens, 2012, 8, e1003022.	2.1	69
38	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	5.9	66
39	A New Lineage of Cryptococcus gattii (VGV) Discovered in the Central Zambezian Miombo Woodlands. MBio, 2019, 10, .	1.8	66
40	Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride. PLoS Pathogens, 2008, 4, e1000155.	2.1	63
41	Invasion of Cryptococcus neoformans into Human Brain Microvascular Endothelial Cells Is Mediated through the Lipid Rafts-Endocytic Pathway via the Dual Specificity Tyrosine Phosphorylation-regulated Kinase 3 (DYRK3). Journal of Biological Chemistry, 2011, 286, 34761-34769.	1.6	62
42	<i>Cryptococcus neoformans</i> phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier. Cellular Microbiology, 2012, 14, 1544-1553.	1.1	62
43	Olfm4 deletion enhances defense against Staphylococcus aureus in chronic granulomatous disease. Journal of Clinical Investigation, 2013, 123, 3751-3755.	3.9	62
44	Structural studies on the major, capsular polysaccharide from Cryptococcus bacillisporus serotype B. Carbohydrate Research, 1980, 82, 103-111.	1.1	61
45	Capsular polysaccharides from a parent strain and from a possible, mutant strain of cryptococcus neoformans serotype A. Carbohydrate Research, 1981, 95, 237-247.	1.1	59
46	Cas3p Belongs to a Seven-Member Family of Capsule Structure Designer Proteins. Eukaryotic Cell, 2004, 3, 1513-1524.	3.4	59
47	Invasion of <i>Cryptococcus neoformans</i> into human brain microvascular endothelial cells requires protein kinase C-α activation. Cellular Microbiology, 2008, 10, 1854-1865.	1.1	57
48	Environmental distribution of <i>Cryptococcus neoformans</i> and <i>C. gattii</i> around the Mediterranean basin. FEMS Yeast Research, 2016, 16, fow045.	1.1	57
49	<i>Cryptococcus neoformans</i> Siteâ€2 protease is required for virulence and survival in the presence of azole drugs. Molecular Microbiology, 2009, 74, 672-690.	1.2	56
50	Identification and Characterization of an Aspergillus fumigatus "Supermater―Pair. MBio, 2011, 2, .	1.8	55
51	Genetic Analysis Using an Isogenic Mating Pair of Aspergillus fumigatus Identifies Azole Resistance Genes and Lack of MAT Locus's Role in Virulence. PLoS Pathogens, 2015, 11, e1004834.	2.1	52
52	Structural variability in the glucuronoxylomannan of Cryptococcus neoformans serotype A isolates determined by 13C NMR spectroscopy. Carbohydrate Research, 1992, 233, 205-218.	1.1	49
53	Conservation of the Sterol Regulatory Element-Binding Protein Pathway and Its Pathobiological Importance in Cryptococcus neoformans. Eukaryotic Cell, 2009, 8, 1770-1779.	3.4	49
54	Molecular Analysis of CPR α, a MAT α-Specific Pheromone Receptor Gene of Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 432-439.	3.4	48

#	Article	IF	CITATIONS
55	Regulatory Diversity of <i>TUP1</i> in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2009, 8, 1901-1908.	3.4	48
56	Sexual reproduction in Aspergillus species of medical or economical importance: why so fastidious?. Trends in Microbiology, 2009, 17, 481-487.	3.5	46
57	Cryptococcus neoformans Activates RhoGTPase Proteins Followed by Protein Kinase C, Focal Adhesion Kinase, and Ezrin to Promote Traversal across the Blood-Brain Barrier. Journal of Biological Chemistry, 2012, 287, 36147-36157.	1.6	46
58	Cryptotrichosporon anacardiigen. nov., sp. nov., a new trichosporonoid capsulate basidiomycetous yeast from Nigeria that is able to form melanin on niger seed agar. FEMS Yeast Research, 2007, 7, 339-350.	1.1	45
59	Aspergillus tanneri sp. nov., a New Pathogen That Causes Invasive Disease Refractory to Antifungal Therapy. Journal of Clinical Microbiology, 2012, 50, 3309-3317.	1.8	44
60	Fundamental niche prediction of the pathogenic yeasts <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> in Europe. Environmental Microbiology, 2017, 19, 4318-4325.	1.8	44
61	Human Leukocytes Kill <i>Aspergillus nidulans</i> by Reactive Oxygen Species-Independent Mechanisms. Infection and Immunity, 2011, 79, 767-773.	1.0	43
62	Roles of Three Cryptococcus neoformans and Cryptococcus gattii Efflux Pump-Coding Genes in Response to Drug Treatment. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	43
63	Characterization of the Chromosome 4 Genes That Affect Fluconazole-Induced Disomy Formation in Cryptococcus neoformans. PLoS ONE, 2012, 7, e33022.	1.1	41
64	Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2012, 84, 130-146.	1.2	38
65	Structure of the O-deacetylated glucuronoxylomannan from Cryptococcus neoformans Cap70 as determined by 2D NMR spectroscopy. Carbohydrate Research, 1996, 283, 95-110.	1.1	37
66	Chloroquine Modulates the Fungal Immune Response in Phagocytic Cells From Patients With Chronic Granulomatous Disease. Journal of Infectious Diseases, 2013, 207, 1932-1939.	1.9	37
67	A novel episomal shuttle vector for transformation ofCryptococcus neoformanswith theccdBgene as a positive selection marker in bacteria. FEMS Microbiology Letters, 2000, 187, 41-45.	0.7	32
68	<i>Cryptococcus gattii</i> Capsule Blocks Surface Recognition Required for Dendritic Cell Maturation Independent of Internalization and Antigen Processing. Journal of Immunology, 2016, 196, 1259-1271.	0.4	31
69	Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis. PLoS Pathogens, 2015, 11, e1005040.	2.1	28
70	Differences in Nitrogen Metabolism between Cryptococcus neoformans and C. gattii, the Two Etiologic Agents of Cryptococcosis. PLoS ONE, 2012, 7, e34258.	1.1	26
71	Cryptococcus gattii Species Complex as an Opportunistic Pathogen: Underlying Medical Conditions Associated with the Infection. MBio, 2021, 12, e0270821.	1.8	25
72	Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nature Communications, 2021, 12, 3418.	5.8	21

#	Article	IF	CITATIONS
73	Is Cryptococcus gattii a Primary Pathogen?. Journal of Fungi (Basel, Switzerland), 2015, 1, 154-167.	1.5	20
74	Aspergillosis, eosinophilic esophagitis, and allergic rhinitis in signal transducer and activator of transcription 3 haploinsufficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 993-997.e3.	1.5	19
75	Environmental Niches for <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> ., 0, , 235-259.		19
76	Cryptococcus neoformans with a Mutation in the Tetratricopeptide Repeat-Containing Gene, CCN1 , Causes Subcutaneous Lesions but Fails To Cause Systemic Infection. Infection and Immunity, 2003, 71, 1988-1994.	1.0	18
77	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
78	Cryptococcus neoformans, Unlike Candida albicans, Forms Aneuploid Clones Directly from Uninucleated Cells under Fluconazole Stress. MBio, 2018, 9, .	1.8	18
79	Genetic Factors and Genotype-Environment Interactions Contribute to Variation in Melanin Production in the Fungal Pathogen Cryptococcus neoformans. Scientific Reports, 2018, 8, 9824.	1.6	16
80	Clinical Perspectives on <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> : Implications for Diagnosis and Management. , 0, , 595-606.		16
81	Antifungal Susceptibility Profiles of Olorofim (Formerly F901318) and Currently Available Systemic Antifungals against Mold and Yeast Phases of <i>Talaromyces marneffei</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	15
82	Molecular Mechanisms of Hypoxic Responses via Unique Roles of Ras1, Cdc24 and Ptp3 in a Human Fungal Pathogen Cryptococcus neoformans. PLoS Genetics, 2014, 10, e1004292.	1.5	14
83	Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice. Scientific Reports, 2017, 7, 10977.	1.6	14
84	Exogenous Stimulation of Type I Interferon Protects Mice with Chronic Granulomatous Disease from Aspergillosis through Early Recruitment of Host-Protective Neutrophils into the Lung. MBio, 2018, 9, .	1.8	14
85	Determination of viability of <i>Histoplasma capsulatum</i> yeast cells grown <i>in vitro</i> : comparison between dye and colony count methods. Medical Mycology, 1987, 25, 107-114.	0.3	12
86	Differences between Cryptococcus neoformans and Cryptococcus gattii in the Molecular Mechanisms Governing Utilization of D-Amino Acids as the Sole Nitrogen Source. PLoS ONE, 2015, 10, e0131865.	1.1	12
87	Identification of a novel gene, URE2, that functionally complements a urease-negative clinical strain of Cryptococcus neoformans. Microbiology (United Kingdom), 2006, 152, 3723-3731.	0.7	12
88	Systematics of the Genus Cryptococcus and Its Type Species C. neoformans. , 0, , 1-15.		12
89	Pulmonary Iron Limitation Induced by Exogenous Type I IFN Protects Mice from Cryptococcus gattii Independently of T Cells. MBio, 2019, 10, .	1.8	11
90	The major capsular polysaccharide of Cryptococcus neoformans serotype B. Carbohydrate Research, 1992, 233, 271-272.	1.1	9

3

#	Article	IF	CITATIONS
91	Cryptococcus neoformansYop1, an endoplasmic reticulum curvature-stabilizing protein, participates with Sey1 in influencing fluconazole-induced disomy formation. FEMS Yeast Research, 2012, 12, 748-754.	1.1	9
92	Role of Actin-Bundling Protein Sac6 in Growth of Cryptococcus neoformans at Low Oxygen Concentration. Eukaryotic Cell, 2012, 11, 943-951.	3.4	8
93	Population diversity and virulence characteristics of Cryptococcus neoformans/C. gattii species complexes isolated during the pre-HIV-pandemic era. PLoS Neglected Tropical Diseases, 2020, 14, e0008651.	1.3	8
94	The Architecture and Antigenic Composition of the Polysaccharide Capsule. , 0, , 43-54.		8
95	<p>Cryptococcus neoformans/gattii Species Complexes from Pre-HIV Pandemic Era Contain Unusually High Rate of Non-Wild-Type Isolates for Amphotericin B</p> . Infection and Drug Resistance, 2020, Volume 13, 673-681.	1.1	7
96	The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective. , 0, , 139-149.		7
97	A Novel Role of Fungal Type I Myosin in Regulating Membrane Properties and Its Association with <scp>d</scp> -Amino Acid Utilization in Cryptococcus gattii. MBio, 2019, 10, .	1.8	6
98	Global Sexual Fertility in the Opportunistic Pathogen Aspergillus fumigatus and Identification of New Supermater Strains. Journal of Fungi (Basel, Switzerland), 2020, 6, 258.	1.5	6
99	Invasion of <i>Cryptococcus</i> into the Central Nervous System. , 0, , 465-471.		6
100	The History of Cryptococcus and Cryptococcosis. , 0, , 17-26.		5
101	Diagnostic Approach Based on Capsular Antigen, Capsule Detection, β-Glucan, and DNA Analysis. , 0, , 547-564.		5
102	Population Structure and Ecology of Cryptococcus neoformans and Cryptococcus gattii. , 0, , 97-111.		5
103	Biosynthesis and Genetics of the Cryptococcus Capsule. , 0, , 27-41.		4
104	A Role for Mating in Cryptococcal Virulence. , 0, , 167-174.		3
105	Drug Resistance in <i>Cryptococcus</i> : Epidemiology and Molecular Mechanisms. , 0, , 203-216.		3
106	Cryptococcosis in Africa. , 0, , 269-285.		3
107	Cryptococcosis in Asia. , 0, , 287-297.		3

108 Sexual Reproduction of Cryptococcus. , 0, , 81-96.

#	Article	IF	CITATIONS
109	Annotated Genome Sequence of <i>Aspergillus tanneri</i> NIH1004. Microbiology Resource Announcements, 2020, 9, .	0.3	2
110	Sensing Extracellular Signals in Cryptococcus neoformans. , 0, , 175-187.		2
111	Cryptococcosis in Experimental Animals: Lessons Learned. , 0, , 473-488.		2
112	The Cryptococcus Genomes: Tools for Comparative Genomics and Expression Analysis. , 0, , 113-126.		2
113	G-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus. , 0, , 151-165.		1
114	Genetic and Genomic Approaches to Cryptococcus Environmental and Host Responses. , 0, , 127-137.		1
115	Intracellular Replication and Exit Strategies. , 0, , 441-450.		1
116	Virulence Mechanisms of Cryptococcus gattii: Convergence and Divergence. , 0, , 189-201.		0
117	Cryptococcus neoformans: Nonvertebrate Hosts and the Emergence of Virulence. , 0, , 261-267.		Ο