
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800283/publications.pdf Version: 2024-02-01

III-DEI SHEM

#	Article	IF	CITATIONS
1	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€term fertilization practices. Environmental Microbiology, 2007, 9, 2364-2374.	1.8	877
2	Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2, 621-624.	5.4	735
3	Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal, 2012, 6, 1032-1045.	4.4	614
4	Abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10, 1601-1611.	1.8	508
5	Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72, 386-394.	1.3	419
6	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
7	Ammoniaâ€oxidizing archaea: important players in paddy rhizosphere soil?. Environmental Microbiology, 2008, 10, 1978-1987.	1.8	340
8	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	4.9	278
9	A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 2012, 3, 296.	1.5	191
10	Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Applied Soil Ecology, 2010, 46, 119-124.	2.1	158
11	Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environmental Microbiology, 2021, 23, 1907-1924.	1.8	132
12	Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. Journal of Soils and Sediments, 2010, 10, 943-954.	1.5	122
13	Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biology and Fertility of Soils, 2011, 47, 323-331.	2.3	102
14	Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 2011, 11, 1243-1252.	1.5	100
15	Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiology Ecology, 2012, 80, 146-158.	1.3	91
16	Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils and Sediments, 2010, 10, 1510-1516.	1.5	82
17	Soil environmental factors rather than denitrification gene abundance control N2O fluxes in a wet sclerophyll forest with different burning frequency. Soil Biology and Biochemistry, 2013, 57, 292-300.	4.2	77
18	Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils. Journal of Hazardous Materials, 2020, 389, 121838.	6.5	77

#	Article	IF	CITATIONS
19	Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil. Environmental Science and Pollution Research, 2011, 18, 1644-1652.	2.7	70
20	A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. Soil Use and Management, 2009, 25, 454-461.	2.6	66
21	Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biology and Fertility of Soils, 2016, 52, 1163-1171.	2.3	65
22	Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environmental Science and Pollution Research, 2010, 17, 1237-1244.	2.7	62
23	Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment. Biology and Fertility of Soils, 2017, 53, 601-611.	2.3	61
24	Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China. FEMS Microbiology Ecology, 2019, 95, .	1.3	54
25	Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of the Total Environment, 2020, 712, 136418.	3.9	53
26	Frontiers in the microbial processes of ammonia oxidation in soils and sediments. Journal of Soils and Sediments, 2014, 14, 1023-1029.	1.5	49
27	Distributions and environmental drivers of archaea and bacteria in paddy soils. Journal of Soils and Sediments, 2019, 19, 23-37.	1.5	39
28	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€term fertilization practices. Environmental Microbiology, 2007, 9, 3152-3152.	1.8	36
29	Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Scientific Reports, 2016, 6, 19639.	1.6	36
30	Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils. Scientific Reports, 2017, 7, 45142.	1.6	31
31	Candidatus Brocadia and Candidatus Kuenenia predominated in anammox bacterial community in selected Chinese paddy soils. Journal of Soils and Sediments, 2015, 15, 1977-1986.	1.5	29
32	Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils. Microbial Ecology, 2016, 72, 221-230.	1.4	28
33	Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe. FEMS Microbiology Ecology, 2017, 93, .	1.3	28
34	Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. Journal of Soils and Sediments, 2018, 18, 762-774.	1.5	27
35	Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biology and Fertility of Soils, 2010, 46, 283-291.	2.3	23
36	Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. Environmental Monitoring and Assessment, 2016, 188, 112.	1.3	22

#	Article	IF	CITATIONS
37	Effects of the nitrification inhibitor dicyandiamide (DCD) on N2Oemissions and the abundance of nitrifiers and denitrifiers in two contrasting agricultural soils. Journal of Soils and Sediments, 2017, 17, 1635-1643.	1.5	22
38	Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Applied Soil Ecology, 2018, 130, 241-250.	2.1	22
39	Primary Succession of Nitrogen Cycling Microbial Communities Along the Deglaciated Forelands of Tianshan Mountain, China. Frontiers in Microbiology, 2016, 7, 1353.	1.5	21
40	Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. Journal of Soils and Sediments, 2017, 17, 384-392.	1.5	21
41	Differential response of archaeal groups to land use change in an acidic red soil. Science of the Total Environment, 2013, 461-462, 742-749.	3.9	20
42	Fungal networks serve as novel ecological routes for enrichment and dissemination of antibiotic resistance genes as exhibited by microcosm experiments. Scientific Reports, 2017, 7, 15457.	1.6	20
43	Rates and microbial communities of denitrification and anammox across coastal tidal flat lands and inland paddy soils in East China. Applied Soil Ecology, 2021, 157, 103768.	2.1	20
44	Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environmental Monitoring and Assessment, 2014, 186, 4037-4050.	1.3	19
45	Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau. Microbial Ecology, 2018, 75, 1009-1023.	1.4	18
46	Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils. Journal of Soils and Sediments, 2011, 11, 432-439.	1.5	15
47	Limited effects of depth (0–80 cm) on communities of archaea, bacteria and fungi in paddy soil profiles. European Journal of Soil Science, 2020, 71, 955-966.	1.8	15
48	Contrasting response of nitrification capacity in three agricultural soils to N addition during short-term incubation. Journal of Soils and Sediments, 2014, 14, 1861-1868.	1.5	13
49	Variation of soil nitrate and bacterial diversity along soil profiles in manure disposal maize field and adjacent woodland. Journal of Soils and Sediments, 2020, 20, 3557-3568.	1.5	11
50	Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Science of the Total Environment, 2022, 807, 150781.	3.9	11
51	Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea. Environmental Science and Pollution Research, 2016, 23, 23023-23033.	2.7	10
52	Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecology Letters, 2020, 2, 255-267.	2.4	10
53	Distribution and Succession Feature of Antibiotic Resistance Genes Along a Soil Development Chronosequence in Urumqi No.1 Glacier of China. Frontiers in Microbiology, 2019, 10, 1569.	1.5	9
54	DNA stable isotope probing revealed no incorporation of 13CO2 into comammox Nitrospira but ammonia-oxidizing archaea in a subtropical acid soil. Journal of Soils and Sediments, 2020, 20, 1297-1308.	1.5	8

#	Article	IF	CITATIONS
55	Grazing does not increase soil antibiotic resistome in two types of grasslands in Inner Mongolia, China. Applied Soil Ecology, 2020, 155, 103644.	2.1	8
56	Fumigation practice combined with organic fertilizer increase antibiotic resistance in watermelon rhizosphere soil. Science of the Total Environment, 2022, 805, 150426.	3.9	7
57	Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems. Frontiers in Microbiology, 2021, 12, 678290.	1.5	6
58	Changes in bacterial community composition across natural grassland and pine forests in the Bunya Mountains in subtropical Australia. Soil Research, 2019, 57, 825.	0.6	5