List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800109/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. , 2015, , .		490
2	Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Analytical Chemistry, 2011, 83, 4273-4280.	3.2	323
3	Twenty years research in cholinesterase biosensors: From basic research to practical applications. New Biotechnology, 2006, 23, 1-15.	2.7	320
4	Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine, 2011, 51, 1155-1163.	1.3	233
5	Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish. Environmental Science & Technology, 2009, 43, 6349-6356.	4.6	232
6	Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor. Analytical Chemistry, 2010, 82, 989-996.	3.2	225
7	Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Analytica Chimica Acta, 2002, 464, 171-180.	2.6	215
8	Enzyme-functionalized mesoporous silica for bioanalytical applications. Analytical and Bioanalytical Chemistry, 2009, 393, 543-554.	1.9	203
9	Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging. Foods, 2018, 7, 168.	1.9	194
10	Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 2020, 10, 19309-19336.	1.7	172
11	Colorimetric Paper Bioassay for the Detection of Phenolic Compounds. Analytical Chemistry, 2012, 84, 9729-9737.	3.2	158
12	Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosensors and Bioelectronics, 2007, 23, 168-175.	5.3	150
13	Review: Recent Developments in Enzyme-Based Biosensors for Biomedical Analysis. Analytical Letters, 2012, 45, 168-186.	1.0	148
14	Portable ceria nanoparticle-based assay for rapid detection of foodantioxidants (NanoCerac). Analyst, The, 2013, 138, 249-262.	1.7	146
15	Portable Nanoparticle-Based Sensors for Food Safety Assessment. Sensors, 2015, 15, 30736-30758.	2.1	146
16	Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenol A. Biosensors and Bioelectronics, 2010, 26, 43-49.	5.3	123
17	Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure and Applied Chemistry, 2004, 76, 861-878.	0.9	115
18	Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale, 2015, 7, 6909-6923.	2.8	113

#	Article	IF	CITATIONS
19	Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta, 2002, 57, 169-176.	2.9	107
20	Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosensors and Bioelectronics, 2016, 80, 9-16.	5.3	106
21	Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosensors and Bioelectronics, 2014, 52, 397-402.	5.3	102
22	Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radical Biology and Medicine, 2012, 53, 2240-2249.	1.3	94
23	Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosensors and Bioelectronics, 2007, 23, 506-512.	5.3	92
24	Electroanalytical Evaluation of Antioxidant Activity of Cerium Oxide Nanoparticles by Nanoparticle Collisions at Microelectrodes. Journal of the American Chemical Society, 2013, 135, 16770-16773.	6.6	91
25	Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays. Analytical Chemistry, 2013, 85, 10028-10032.	3.2	89
26	Correlation of Analyte Structures with Biosensor Responses Using the Detection of Phenolic Estrogens as a Model. Analytical Chemistry, 2004, 76, 552-560.	3.2	85
27	Multiarray Sensors with Pattern Recognition for the Detection, Classification, and Differentiation of Bacteria at Subspecies and Strain Levels. Analytical Chemistry, 2005, 77, 7941-7949.	3.2	83
28	Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 52788-52796.	4.0	83
29	Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Analytical and Bioanalytical Chemistry, 2002, 374, 25-32.	1.9	81
30	AChE biosensor based on zinc oxide sol–gel for the detection of pesticides. Analytica Chimica Acta, 2010, 661, 195-199.	2.6	78
31	A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes. Electrochemistry Communications, 2003, 5, 681-688.	2.3	76
32	Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity. Biosensors and Bioelectronics, 2014, 56, 334-339.	5.3	76
33	Mixed Ceria-Based Metal Oxides Biosensor for Operation in Oxygen Restrictive Environments. Analytical Chemistry, 2008, 80, 7266-7274.	3.2	72
34	ssDNAâ€Functionalized Nanoceria: A Redoxâ€Active Aptaswitch for Biomolecular Recognition. Advanced Healthcare Materials, 2016, 5, 822-828.	3.9	71
35	Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays. Analytica Chimica Acta, 2015, 885, 140-147.	2.6	70
36	Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors. Sensors, 2009, 9, 2976-2999.	2.1	69

#	Article	IF	CITATIONS
37	Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosensors and Bioelectronics, 2011, 30, 43-48.	5.3	69
38	Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors. Biosensors and Bioelectronics, 2003, 18, 781-790.	5.3	68
39	JEM Spotlight: Applications of advanced nanomaterials for environmental monitoring. Journal of Environmental Monitoring, 2009, 11, 27-40.	2.1	67
40	Trends in Flow-based Biosensing Systems for Pesticide Assessment. Sensors, 2006, 6, 1161-1186.	2.1	66
41	Design of PEC-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules. Biosensors and Bioelectronics, 2013, 45, 168-173.	5.3	66
42	Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties. Food Chemistry, 2016, 192, 380-387.	4.2	66
43	MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications. Sensors, 2020, 20, 5434.	2.1	66
44	Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Analytica Chimica Acta, 2003, 481, 209-211.	2.6	65
45	Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: A glucose biosensor application. Analytical Biochemistry, 2008, 375, 282-290.	1.1	65
46	Applications and implications of nanoceria reactivity: measurement tools and environmental impact. Environmental Science: Nano, 2014, 1, 445-458.	2.2	64
47	Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. Biosensors and Bioelectronics, 2007, 22, 2643-2649.	5.3	63
48	Redox reactivity of cerium oxide nanoparticles against dopamine. Journal of Colloid and Interface Science, 2014, 418, 240-245.	5.0	63
49	Nanoporous Sorbents for the Removal and Recovery of Phosphorus from Eutrophic Waters: Sustainability Challenges and Solutions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12542-12561.	3.2	63
50	Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens. Sensors, 2017, 17, 2121.	2.1	62
51	Detection of organophosphorus insecticides with immobilized acetylcholinesterase - comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry, 2002, 374, 39-45.	1.9	59
52	Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos. Analytica Chimica Acta, 2011, 695, 89-95.	2.6	59
53	IMMOBILIZATION OF ENZYMES ON SCREEN-PRINTED SENSORS VIA AN HISTIDINE TAIL. APPLICATION TO THE DETECTION OF PESTICIDES USING MODIFIED CHOLINESTERASE. Analytical Letters, 2001, 34, 529-540.	1.0	58
54	Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster. Biosensors and Bioelectronics, 2004, 20, 825-832.	5.3	57

#	Article	IF	CITATIONS
55	A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Nanoscale, 2015, 7, 13230-13238.	2.8	57
56	Advances in analytical technologies for environmental protection and public safety. Journal of Environmental Monitoring, 2004, 6, 513.	2.1	56
57	Electrochemical Quantification of Serotonin in the Live Embryonic Zebrafish Intestine. Analytical Chemistry, 2010, 82, 1822-1830.	3.2	55
58	Comparative Evaluation of Intestinal Nitric Oxide in Embryonic Zebrafish Exposed to Metal Oxide Nanoparticles. Small, 2013, 9, 4250-4261.	5.2	55
59	Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. Journal of Materials Chemistry B, 2016, 4, 7178-7203.	2.9	54
60	Autonomous Multielectrode System for Monitoring the Interactions of Isoflavonoids with Lung Cancer Cells. Analytical Chemistry, 2004, 76, 2321-2330.	3.2	53
61	Platinum-Doped Ceria Based Biosensor for <i>in Vitro</i> and <i>in Vivo</i> Monitoring of Lactate during Hypoxia. Analytical Chemistry, 2015, 87, 2996-3003.	3.2	52
62	Electrochemical Studies of Ceria as Electrode Material for Sensing and Biosensing Applications. Journal of the Electrochemical Society, 2008, 155, F169.	1.3	51
63	Portable Colorimetric Paper-Based Biosensing Device for the Assessment of Bisphenol A in Indoor Dust. Environmental Science & Technology, 2015, 49, 9889-9897.	4.6	51
64	Metal oxide based multisensor array and portable database for field analysis of antioxidants. Sensors and Actuators B: Chemical, 2014, 193, 552-562.	4.0	48
65	Multifunctional biomagnetic capsules for easy removal of phenol and bisphenol A. Water Research, 2010, 44, 1961-1969.	5.3	47
66	Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sensors, 2020, 5, 4092-4100.	4.0	47
67	Biomagnetic Glasses: Preparation, Characterization, and Biosensor Applications. Langmuir, 2010, 26, 4320-4326.	1.6	46
68	Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Developmental Biology, 2013, 376, 171-186.	0.9	45
69	Biomolecular detection at ssDNA-conjugated nanoparticles by nano-impact electrochemistry. Biosensors and Bioelectronics, 2017, 87, 501-507.	5.3	45
70	Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sensors and Actuators B: Chemical, 2021, 332, 129435.	4.0	41
71	CeO2–MO x (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity. Journal of Materials Science, 2015, 50, 3750-3762.	1.7	40
72	Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Advances, 2013, 3, 15298.	1.7	39

#	Article	IF	CITATIONS
73	A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants. Talanta, 2016, 156-157, 112-118.	2.9	39
74	Biomedical Applications of Metal Oxide Nanoparticles. , 2012, , 57-100.		38
75	Europiumâ€Đoped Cerium Oxide Nanoparticles Limit Reactive Oxygen Species Formation and Ameliorate Intestinal Ischemia–Reperfusion Injury. Advanced Healthcare Materials, 2017, 6, 1700176.	3.9	38
76	Advanced electrochemical sensors for cell cancer monitoring. Methods, 2005, 37, 84-93.	1.9	37
77	Effect of Natural and Synthetic Estrogens on A549 Lung Cancer Cells:  Correlation of Chemical Structures with Cytotoxic Effects. Chemical Research in Toxicology, 2005, 18, 466-474.	1.7	36
78	An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides. Talanta, 2016, 146, 279-284.	2.9	35
79	Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9164-9169.	3.3	34
80	A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles. Journal of Chemical Education, 2007, 84, 1180.	1.1	32
81	A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sensors and Actuators B: Chemical, 2010, 143, 673-680.	4.0	32
82	Highly sensitive mercury detection using electroactive gold-decorated polymer nanofibers. Sensors and Actuators B: Chemical, 2021, 329, 129267.	4.0	32
83	Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environmental Pollution, 2017, 229, 439-447.	3.7	31
84	DNA assay based on Nanoceria as Fluorescence Quenchers (NanoCeracQ DNA assay). Scientific Reports, 2018, 8, 2426.	1.6	31
85	Eu-Doped Ceria Nanocrystals as Nanoenzyme Fluorescent Probes for Biosensing. ACS Applied Nano Materials, 2018, 1, 5722-5735.	2.4	31
86	Easy-to-Use Sensors for Field Monitoring of Copper Contamination in Water and Pesticide-Sprayed Plants. Analytical Chemistry, 2019, 91, 13892-13899.	3.2	30
87	Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors, 2021, 21, 3038.	2.1	30
88	Affinity Methods to Immobilize Acetylcholinesterases for Manufacturing Biosensors. Analytical Letters, 2004, 37, 1571-1588.	1.0	29
89	Electrochemical methods for nanotoxicity assessment. TrAC - Trends in Analytical Chemistry, 2014, 59, 112-120.	5.8	29
90	Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications. Sensors, 2021, 21, 1279.	2.1	29

#	Article	IF	CITATIONS
91	Nanoparticle-Based Technologies for the Detection of Food Antioxidants. Current Analytical Chemistry, 2012, 8, 495-505.	0.6	27
92	Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine. Analytical Letters, 2015, 48, 1044-1069.	1.0	27
93	Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor. Free Radical Biology and Medicine, 2016, 91, 25-33.	1.3	26
94	Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study. Talanta, 2003, 59, 751-765.	2.9	25
95	Adsorption of Arsenic by Iron Oxide Nanoparticles: A Versatile, Inquiry-Based Laboratory for a High School or College Science Course. Journal of Chemical Education, 2011, 88, 1119-1122.	1.1	25
96	Artificial Nanoparticle Antioxidants. ACS Symposium Series, 2011, , 235-253.	0.5	25
97	3D Printed Hydrogel-Based Sensors for Quantifying UV Exposure. ACS Applied Materials & Interfaces, 2020, 12, 43911-43920.	4.0	25
98	Cerium Oxide Nanoparticles Stabilized within Metal–Organic Frameworks for the Degradation of Nerve Agents. ACS Applied Nano Materials, 2020, 3, 3288-3294.	2.4	25
99	3D-Printable Nanocellulose-Based Functional Materials: Fundamentals and Applications. Nanomaterials, 2021, 11, 2358.	1.9	25
100	Electroanalytic Aspects of Singleâ€Entity Collision Methods for Bioanalytical and Environmental Applications. ChemElectroChem, 2018, 5, 2920-2936.	1.7	24
101	Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry. ACS Applied Materials & Interfaces, 2019, 11, 24725-24734.	4.0	24
102	Ceria nanoparticle theranostics: harnessing antioxidant properties in biomedicine and beyond. JPhys Materials, 2021, 4, 042003.	1.8	23
103	Development of Highly Sensitive Sensor Based on Bioengineered Acetylcholinesterase Immobilized by Affinity Method. Analytical Letters, 2003, 36, 1865-1885.	1.0	22
104	Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish. Environmental Science: Nano, 2014, 1, 27-36.	2.2	22
105	Reactivity of nanoceria particles exposed to biologically relevant catechol-containing molecules. RSC Advances, 2016, 6, 60007-60014.	1.7	22
106	Recyclable Adsorbents Based on Ceria Nanostructures on Mesoporous Silica Beads for the Removal and Recovery of Phosphate from Eutrophic Waters. ACS Applied Nano Materials, 2019, 2, 7008-7018.	2.4	21
107	Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles. Environmental Pollution, 2019, 248, 627-634.	3.7	20
108	Two-Dimensional Nanostructures for Electrochemical Biosensor. Sensors, 2021, 21, 3369.	2.1	20

#	Article	IF	CITATIONS
109	Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochemical Science Advances, 2022, 2, .	1.2	19
110	Nanostructured materials for enzyme immobilization and biosensors. , 2008, , 355-394.		17
111	Real time electrochemical investigation of the release, distribution and modulation of nitric oxide in the intestine of individual zebrafish embryos. Nitric Oxide - Biology and Chemistry, 2018, 74, 32-38.	1.2	17
112	Collision-Based Electrochemical Detection of Lysozyme Aggregation. Analytical Chemistry, 2021, 93, 2026-2037.	3.2	17
113	Chapter 7 New materials for biosensors, biochips and molecular bioelectronics. Comprehensive Analytical Chemistry, 2005, , 285-327.	0.7	16
114	Engineered Ptâ€Doped Nanoceria for Oxidaseâ€Based Bioelectrodes Operating in Oxygenâ€Deficient Environments. ChemElectroChem, 2014, 1, 2082-2088.	1.7	16
115	Oxidative Stress and Antibiotic Resistance in Bacterial Pathogens: State of the Art, Methodologies, and Future Trends. Advances in Experimental Medicine and Biology, 2014, 806, 483-498.	0.8	16
116	Online-monitoring of biofilm formation using nanostructured electrode surfaces. Materials Science and Engineering C, 2019, 100, 178-185.	3.8	16
117	A 3D-Printed Breath Analyzer Incorporating CeO ₂ Nanoparticles for Colorimetric Enzyme-Based Ethanol Sensing. ACS Applied Nano Materials, 2021, 4, 9361-9369.	2.4	16
118	Effect of benzotriazole derivatives on the corrosion of steel in simulated concrete pore solutions. Anti-Corrosion Methods and Materials, 2007, 54, 135-147.	0.6	15
119	Visualization of Health Monitoring Data Acquired from Distributed Sensors for Multiple Patients. , 2015, , .		15
120	Electrochemical Investigation of pHâ€Đependent Activity of Polyethylenimine apped Silver Nanoparticles. ChemElectroChem, 2017, 4, 2801-2806.	1.7	15
121	Magnetic Particles-Based Analytical Platforms for Food Safety Monitoring. Magnetochemistry, 2019, 5, 63.	1.0	15
122	Functional Paper-Based Platform for Rapid Capture and Detection of CeO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 12893-12905.	4.0	14
123	Easy-to-use and inexpensive sensors for assessing the quality and traceability of cosmetic antioxidants. Talanta, 2020, 208, 120473.	2.9	14
124	Nanomaterial-functionalized Cellulose: Design, Characterization and Analytical Applications. Analytical Sciences, 2018, 34, 19-31.	0.8	13
125	Nanotoxicity Assessment Using Embryonic Zebrafish. Methods in Molecular Biology, 2019, 1894, 331-343.	0.4	12
126	Existence and Reactivity of Three Forms of Orthophthalaldehyde in Aqueous Solutions. Polarographic, Voltammetric, and Spectrophotometric Study. Journal of Physical Chemistry A, 2007, 111, 4658-4670.	1.1	11

#	Article	IF	CITATIONS
127	Morphology controlled NiO nanostructures as fluorescent quenchers for highly sensitive aptamer-based FRET detection of ochratoxin A. Applied Surface Science, 2021, 566, 150647.	3.1	11
128	Development of a Xanthine Oxidase Modified Amperometric Electrode for the Determination of the Antioxidant Capacity. Electroanalysis, 2010, 22, 2429-2433.	1.5	10
129	Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles. Methods in Enzymology, 2016, 571, 177-195.	0.4	10
130	Integration of Nanoparticle-Based Paper Sensors into the Classroom: An Example of Application for Rapid Colorimetric Analysis of Antioxidants. Journal of Chemical Education, 2015, 92, 886-891.	1.1	8
131	Bioapplications of Electrochemical Sensors and Biosensors. Methods in Enzymology, 2017, 589, 301-350.	0.4	8
132	Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry. Chemosphere, 2018, 192, 178-185.	4.2	8
133	Advances in electrochemical detection for probing protein aggregation. Current Opinion in Electrochemistry, 2021, 30, 100820.	2.5	8
134	Conceptualizing a Real-Time Remote Cardiac Health Monitoring System. Advances in Wireless Technologies and Telecommunication Book Series, 0, , 1-34.	0.3	8
135	Electrochemical sensors for oxidative stress monitoring. Current Opinion in Electrochemistry, 2021, 29, 100809.	2.5	7
136	Methodologies for Toxicity Monitoring and Nanotechnology Risk Assessment. ACS Symposium Series, 2011, , 141-180.	0.5	6
137	Electrochemical Biosensors for Real-Time Monitoring of Reactive Oxygen and Nitrogen Species. ACS Symposium Series, 2015, , 301-327.	0.5	6
138	Oxidative Stress and Human Health. ACS Symposium Series, 2015, , 1-33.	0.5	5
139	Cerium oxide nanoparticles for chemical and biological sensors: Properties, sensing designs, and applications. , 2020, , 259-277.		5
140	Rapid characterization of arsenic adsorption on single magnetite nanoparticles by collisions at microelectrodes. Environmental Science: Nano, 2020, 7, 1999-2009.	2.2	5
141	Detection and prediction of concentrations of neurotransmitters using voltammetry and pattern recognition. , 2009, 2009, 3493-6.		4
142	Quantitative assay for the detection, screening and reactivity evaluation of nanoceria particles. Talanta, 2017, 164, 668-676.	2.9	4
143	Nanoparticle-based amplification for sensitive detection of β-galactosidase activity in fruits. Analytica Chimica Acta, 2021, 1186, 339129.	2.6	4
144	Portable Nanoparticle Based Sensors for Antioxidant Analysis. Methods in Molecular Biology, 2015, 1208, 221-231.	0.4	4

#	Article	IF	CITATIONS
145	CeO ₂ -Assisted Biocatalytic Nanostructures for Laccase-Based Biocathodes and Biofuel Cells. Journal of the Electrochemical Society, 2017, 164, G92-G98.	1.3	3
146	Conceptualizing a Real-Time Remote Cardiac Health Monitoring System. , 2017, , 160-193.		3
147	Printed paper-based (bio)sensors: Design, fabrication and applications. Comprehensive Analytical Chemistry, 2020, 89, 63-89.	0.7	2
148	Response to Enzyme-Linked Biosensors: Michaelisâ^'Menten Kinetics Need Not Apply. Journal of Chemical Education, 2010, 87, 907-907.	1.1	1
149	Visualization of Health Monitoring Data Acquired from Distributed Sensors for Multiple Patients. , 2014, , .		1
150	P-133 Yl Real-Time Monitoring of Reactive Oxygen Species in Intestine During Ischemia-Reperfusion Induced Injury and Infectious Colitis Using Electrochemical Biosensors. Inflammatory Bowel Diseases, 2016, 22, S50-S51.	0.9	1
151	Biomolecular Recognition: ssDNA-Functionalized Nanoceria: A Redox-Active Aptaswitch for Biomolecular Recognition (Adv. Healthcare Mater. 7/2016). Advanced Healthcare Materials, 2016, 5, 864-864.	3.9	1
152	Nanoceria surface: the most sensitive redox-triggered one step nano-amplifier for fluorescence signal of ochratoxin A. Journal of Nanostructure in Chemistry, 2022, 12, 223-233.	5.3	1
153	Nanoparticle Characterization Through Nano-Impact Electrochemistry: Tools and Methodology Development. Methods in Molecular Biology, 2020, 2118, 327-342.	0.4	1
154	Time-Dependent Monitoring of Dopamine in the Brain of Live Embryonic Zebrafish Using Electrochemically Pretreated Carbon Fiber Microelectrodes. ACS Measurement Science Au, 2022, 2, 261-270.	1.9	1
155	Nanotechnology-enabled approaches for the detection of antioxidants by spectroscopic and electrochemical methods. , 0, , 187-207.		0
156	3D Printed Hydrogel-Based Sensors for UV Sensing Applications. ECS Meeting Abstracts, 2021, MA2021-01, 1375-1375.	0.0	0
157	Development of a Portable Electrochemical Sensor for the Detection of Perfluoroalkyl Species. ECS Meeting Abstracts, 2021, MA2021-01, 1494-1494.	0.0	0
158	Cerium Oxide Nanostructures with Controllable Reactivity for Sensing and Environmental Applications. ECS Meeting Abstracts, 2021, MA2021-01, 2053-2053.	0.0	0
159	(Invited) Electrochemical Microbiosensors for In Vivo Monitoring of Neurotransmitters. ECS Meeting Abstracts, 2021, MA2021-01, 1335-1335.	0.0	0
160	Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions Using 2D Metal-Organic Frameworks. ECS Meeting Abstracts, 2021, MA2021-01, 1793-1793.	0.0	0
161	In Vivo Monitoring of Neurotransmitters in Alive Zebrafish (Danio rerio) Embryos. ECS Meeting Abstracts, 2021, MA2021-01, 1459-1459.	0.0	0
162	Ultrasensitive Electrochemical Detection of per and Poly-Fluoroalkyl Species in Drinking Water. ECS Meeting Abstracts, 2021, MA2021-01, 1493-1493.	0.0	0

#	Article	IF	CITATIONS
163	Monolithic Cerium Oxide Nanoparticles Assembly for Wearable Electronics. ECS Meeting Abstracts, 2021, MA2021-02, 1582-1582.	0.0	0
164	Europium-Doped Ceria Nanocrystals as Nanozyme Fluorescent Probes for Biosensing. Chemistry Proceedings, 2021, 5, .	0.1	0
165	Mxene-Ceria Nanocomposite for Health Monitoring Sensorssa. ECS Meeting Abstracts, 2021, MA2021-02, 1598-1598.	0.0	0
166	(Invited) Nanomaterials-Based Electrochemical Enzyme Biosensors for Real Time Monitoring of Neurotransmitters. ECS Meeting Abstracts, 2022, MA2022-01, 2198-2198.	0.0	0