Xiaoxiang Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800104/publications.pdf

Version: 2024-02-01

87 papers	2,183 citations	27 h-index	276875 41 g-index
90	90	90	3918 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	CXCL8 is a prognostic biomarker and correlated with TNBC brain metastasis and immune infiltration. International Immunopharmacology, 2022, 103, 108454.	3.8	10
2	Platinum-based systematic therapy in triple-negative breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188678.	7.4	24
3	SOX2-OT induced by PAI-1 promotes triple-negative breast cancer cells metastasis by sponging miR-942-5p and activating PI3K/Akt signaling. Cellular and Molecular Life Sciences, 2022, 79, 59.	5.4	22
4	The long nonâ€coding RNA landscape in tripleâ€negative breast cancer. Cell Proliferation, 2021, 54, e12966.	5. 3	43
5	Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer. Human Molecular Genetics, 2021, 30, 370-380.	2.9	22
6	Expression of CDK7 correlates with molecular subtypes and predicts clinical outcomes in breast cancer. Translational Cancer Research, 2021, 10, 669-680.	1.0	4
7	Development and validation of a nomogram for prediction of lymph node metastasis in early-stage breast cancer. Gland Surgery, 2021, 10, 901-913.	1.1	6
8	Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomedicine and Pharmacotherapy, 2021, 137, 111314.	5.6	28
9	Progress and challenges of immunotherapy in triple-negative breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188593.	7.4	106
10	Clinical considerations of CDK4/6 inhibitors in triple-negative breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188590.	7.4	17
11	MYC dysfunction modulates stemness and tumorigenesis in breast cancer. International Journal of Biological Sciences, 2021, 17, 178-187.	6.4	26
12	Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis, 2021, 10, 66.	4.9	64
13	Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 370.	8.6	15
14	c-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis. Cell Death and Disease, 2020, 11, 760.	6.3	39
15	SOX9 interacts with FOXC1 to activate MYC and regulate CDK7 inhibitor sensitivity in triple-negative breast cancer. Oncogenesis, 2020, 9, 47.	4.9	25
16	BCL11A confers cell invasion and migration in androgen receptor‑positive triple‑negative breast cancer. Oncology Letters, 2020, 19, 2916-2924.	1.8	8
17	Different Triple-Negative Breast Cancer Tumor Cell Lysates (TCLs) Induce Discrepant Anti-Tumor Immunity by PD1/PDL-1 Interaction. Medical Science Monitor, 2019, 25, 500-515.	1.1	4
18	A novel BRCA1 germline mutation promotes triple-negative breast cancer cells progression and enhances sensitivity to DNA damage agents. Cancer Genetics, 2019, 239, 26-32.	0.4	3

#	Article	IF	CITATIONS
19	T1-2N0M0 Triple-Negative Breast Cancer Treated With Breast-Conserving Therapy Has Better Survival Compared to Mastectomy: A SEER Population-Based Retrospective Analysis. Clinical Breast Cancer, 2019, 19, e669-e682.	2.4	17
20	DAXX, as a Tumor Suppressor, Impacts DNA Damage Repair and Sensitizes BRCA-Proficient TNBC Cells to PARP Inhibitors. Neoplasia, 2019, 21, 533-544.	5.3	13
21	Combined Androgen receptor blockade overcomes the resistance of breast cancer cells to palbociclib. International Journal of Biological Sciences, 2019, 15, 522-532.	6.4	18
22	mutations contribute to fulvestrant resistance in ER-positive breast cancer. American Journal of Translational Research (discontinued), 2019, 11, 6055-6065.	0.0	7
23	Combined Inhibition of ATR and WEE1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Neoplasia, 2018, 20, 478-488.	5.3	67
24	miR-19b-3p inhibits breast cancer cell proliferation and reverses saracatinib-resistance by regulating PI3K/Akt pathway. Archives of Biochemistry and Biophysics, 2018, 645, 54-60.	3.0	39
25	Endothelial cells promote tripleâ€negative breast cancer cell metastasis <i>via</i> PAlâ€1 and CCL5 signaling. FASEB Journal, 2018, 32, 276-288.	0.5	71
26	Potential biomarkers of CDK4/6 inhibitors in hormone receptor-positive advanced breast cancer. Breast Cancer Research and Treatment, 2018, 168, 287-297.	2.5	30
27	Epithelial-mesenchymal transition induced PAI-1 is associated with prognosis of triple-negative breast cancer patients. Gene, 2018, 670, 7-14.	2.2	23
28	Androgen blockade based clinical trials landscape in triple negative breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 283-290.	7.4	13
29	An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death and Differentiation, 2018, 25, 2209-2220.	11.2	94
30	Long non-coding RNA FENDRR inhibits cell proliferation and is associated with good prognosis in breast cancer. OncoTargets and Therapy, 2018, Volume 11, 1403-1412.	2.0	55
31	Therapeutic landscape in mutational triple negative breast cancer. Molecular Cancer, 2018, 17, 99.	19.2	70
32	PAlâ€1 induces Src inhibitor resistance via CCL5 in HER2â€positive breast cancer cells. Cancer Science, 2018, 109, 1949-1957.	3.9	25
33	Emerging therapeutic modalities of PARP inhibitors in breast cancer. Cancer Treatment Reviews, 2018, 68, 62-68.	7.7	28
34	Prohibitin promotes androgen receptor activation in ER-positive breast cancer. Cell Cycle, 2017, 16, 776-784.	2.6	17
35	Regulator of G protein signaling 20 correlates with clinicopathological features and prognosis in triple-negative breast cancer. Biochemical and Biophysical Research Communications, 2017, 485, 693-697.	2.1	13
36	PARP inhibitor increases chemosensitivity by upregulating miR-664b-5p in BRCA1-mutated triple-negative breast cancer. Scientific Reports, 2017, 7, 42319.	3.3	23

#	Article	IF	Citations
37	Predictive biomarkers for triple negative breast cancer treated with platinum-based chemotherapy. Cancer Biology and Therapy, 2017, 18, 369-378.	3.4	31
38	$\rm ER\hat{I}^21$ inhibits metastasis of androgen receptor-positive triple-negative breast cancer by suppressing ZEB1. Journal of Experimental and Clinical Cancer Research, 2017, 36, 75.	8.6	24
39	Mechanisms of resistance to selective estrogen receptor down-regulator in metastatic breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 148-156.	7.4	16
40	Differential microRNA expression is associated with androgen receptor expression in breast cancer. Molecular Medicine Reports, 2017, 15, 29-36.	2.4	20
41	The Androgen Receptor Promotes Cellular Proliferation by Suppression of G-Protein Coupled Estrogen Receptor Signaling in Triple-Negative Breast Cancer. Cellular Physiology and Biochemistry, 2017, 43, 2047-2061.	1.6	33
42	Intratumor heterogeneity predicts metastasis of triple-negative breast cancer. Carcinogenesis, 2017, 38, 900-909.	2.8	63
43	Breast cancer stem cell: the roles and therapeutic implications. Cellular and Molecular Life Sciences, 2017, 74, 951-966.	5.4	104
44	The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer. OncoTargets and Therapy, 2016, Volume 9, 4377-4385.	2.0	7
45	The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer. International Journal of Biological Sciences, 2016, 12, 1500-1510.	6.4	23
46	Evaluation of Breast Cancer Stem Cells and Intratumor Stemness Heterogeneity in Triple-negative Breast Cancer as Prognostic Factors. International Journal of Biological Sciences, 2016, 12, 1568-1577.	6.4	37
47	BRCA1 inhibits AR–mediated proliferation of breast cancer cells through the activation of SIRT1. Scientific Reports, 2016, 6, 22034.	3.3	51
48	Identification and frequency of the rs12516 and rs8176318 BRCA1 gene polymorphisms among different populations. Oncology Letters, 2016, 11, 2481-2486.	1.8	8
49	Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation. Cell Cycle, 2016, 15, 1344-1351.	2.6	39
50	Three-Dimensional Assessment of Automated Breast Volume Scanner Compared with Handheld Ultrasound in Pre-Operative Breast Invasive Ductal Carcinomas: A Pilot Study of 51 Cases. Ultrasound in Medicine and Biology, 2016, 42, 2089-2096.	1.5	10
51	Antiproliferative Effect of Androgen Receptor Inhibition in Mesenchymal Stem-Like Triple-Negative Breast Cancer. Cellular Physiology and Biochemistry, 2016, 38, 1003-1014.	1.6	54
52	Maintenance Therapy With Immunomodulatory Drugs in Multiple Myeloma: A Meta-Analysis and Systematic Review. Journal of the National Cancer Institute, 2016, 108, .	6.3	49
53	Analysis of different <scp>HER</scp> â€2 mutations in breast cancer progression and drug resistance. Journal of Cellular and Molecular Medicine, 2015, 19, 2691-2701.	3.6	42
54	p27Kip1 and Ser10-phosphorylated p27Kip1 in breast cancer: clinical significance and expression. OncoTargets and Therapy, 2015, 8, 1863.	2.0	1

#	Article	IF	Citations
55	Identification of dysregulated microRNAs in triple-negative breast cancer (Review). International Journal of Oncology, 2015, 46, 927-932.	3.3	53
56	miR-1470 mediates lapatinib induced p27 upregulation by targeting c-jun. Journal of Cellular Physiology, 2015, 230, 1630-1639.	4.1	10
57	The regulatory loop of COMP1 and HNF-4-miR-150-p27 in various signaling pathways. Oncology Letters, 2015, 9, 195-200.	1.8	O
58	The novel role of miRNAs for tamoxifen resistance in human breast cancer. Cellular and Molecular Life Sciences, 2015, 72, 2575-2584.	5 . 4	20
59	Genetic variant rs16430 6bp > 0bp at the microRNAâ€binding site in <i>TYMS</i> and risk of sporadion breast cancer risk in nonâ€hispanic white women aged â‰\$5 years. Molecular Carcinogenesis, 2015, 54, 281-290.	2.7	15
60	Potentially functional polymorphisms in aminoacyl-tRNA synthetases genes are associated with breast cancer risk in a Chinese population. Molecular Carcinogenesis, 2015, 54, 577-583.	2.7	15
61	Prognostic role of androgen receptor expression in triple-negative breast cancer Journal of Clinical Oncology, 2015, 33, 1076-1076.	1.6	1
62	Pre-Hospital Induced Hypothermia Improves Outcomes in a Pig Model of Traumatic Hemorrhagic Shock. Advances in Clinical and Experimental Medicine, 2015, 24, 571-578.	1.4	6
63	TXNIP interaction with the Her-1/2 pathway contributes to overall survival in breast cancer. Oncotarget, 2015, 6, 3003-3012.	1.8	22
64	BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner. Oncotarget, 2015, 6, 7608-7618.	1.8	38
65	Genetic variant rs1058240 at the microRNA-binding site in the GATA3 gene may regulate its mRNA expression. Biomedical Reports, 2014, 2, 404-407.	2.0	6
66	TAp73 and ΔNp73 Have Opposing Roles in 5-aza-2′-Deoxycytidine-Induced Apoptosis in Breast Cancer Cells. Molecules and Cells, 2014, 37, 605-612.	2.6	11
67	Quantitative assessment of the association between three polymorphisms in FAS and FASL gene and breast cancer risk. Tumor Biology, 2014, 35, 3035-3039.	1.8	7
68	Multitargeted antiangiogenic tyrosine kinase inhibitors combined to chemotherapy in metastatic breast cancer: a systematic review and meta-analysis. European Journal of Clinical Pharmacology, 2014, 70, 531-538.	1.9	10
69	Both c-Myc and Ki-67 expression are predictive markers in patients with Extranodal NK/T-cell lymphoma, nasal type: A retrospective study in China. Pathology Research and Practice, 2014, 210, 351-356.	2.3	30
70	Risk of hypertension with regorafenib in cancer patients: a systematic review and meta-analysis. European Journal of Clinical Pharmacology, 2014, 70, 225-231.	1.9	53
71	A novel <i>GPR30 rs10235056</i> A>G polymorphism associated with post-transcriptional regulation in lymphoblastoid cell lines. Biomarkers, 2014, 19, 417-423.	1.9	2
72	Identification of prohibitin and prohibiton as novel factors binding to the p53 induced gene 3 (PIG3) promoter (TGYCC)15 motif. Biochemical and Biophysical Research Communications, 2014, 443, 1239-1244.	2.1	20

#	Article	IF	Citations
73	Incidence and risk of diarrhea in cancer patients treated with pertuzumab: Evidence from published studies Journal of Clinical Oncology, 2014, 32, e22216-e22216.	1.6	1
74	Transcriptional regulation of the p73 gene by Nrf-2 and promoter CpG methylation in human breast cancer. Oncotarget, 2014, 5, 6909-6922.	1.8	23
75	Adding VEGFR-TKIs to chemotherapy and/or hormonal therapy in advanced breast cancer patients: Results of a meta-analysis Journal of Clinical Oncology, 2014, 32, 1052-1052.	1.6	0
76	Bortezomib-Containing Regimens for Multiple Myeloma Maintenance Therapy: a Meta-Analysis. Blood, 2014, 124, 3473-3473.	1.4	0
77	The Efficacy and Safety of Immunomodulatory Drugs in Multiple Myeloma Maintenance Therapy: Results of a Meta-Analysis. Blood, 2014, 124, 3477-3477.	1.4	0
78	A functional variant at the miRâ€885â€5p binding site of CASP3 confers risk of both index and second primary malignancies in patients with head and neck cancer. FASEB Journal, 2013, 27, 1404-1412.	0.5	32
79	Functional repeats (TGYCC)n in the p53-inducible gene 3 (PIG3) promoter and susceptibility to squamous cell carcinoma of the head and neck. Carcinogenesis, 2013, 34, 812-817.	2.8	8
80	Association between a functional variant at <i>PTGS2</i> gene 3′UTR and its mRNA expression in lymphoblastoid cell lines. Cell Biology International, 2013, 37, 516-519.	3.0	8
81	Association between a rare novel <i><scp>TP</scp>53</i> variant (rs78378222) and melanoma, squamous cell carcinoma of head and neck and lung cancer susceptibility in nonâ€Hispanic Whites. Journal of Cellular and Molecular Medicine, 2013, 17, 873-878.	3.6	11
82	Association of STXBP4/COX11 rs6504950 (G>A) Polymorphism with Breast Cancer Risk: Evidence from 17,960 Cases and 22,713 Controls. Archives of Medical Research, 2012, 43, 383-388.	3.3	7
83	Variation of gene expression profile linked to p27 Kip1 Ser10 phosphorylation status in MCF-7 cell line. Biomedicine and Pharmacotherapy, 2011, 65, 537-541.	5.6	2
84	Regional hyperthermia combined with intrapleural chemotherapy in patients with malignant pleural effusion. Chinese-German Journal of Clinical Oncology, 2011, 10, 360-365.	0.1	0
85	p27 ^{Kip1} as a prognostic factor in breast cancer: a systematic review and metaâ€analysis. Journal of Cellular and Molecular Medicine, 2010, 14, 944-953.	3.6	51
86	Protein profiling: A possible molecular mechanism to mislocalization and down-expression of p27Kip1 in tumor cells. Medical Hypotheses, 2007, 69, 580-583.	1.5	5
87	Mutations of phosphorylation sites Ser10 and Thr187 of p27Kip1 abolish cytoplasmic redistribution but do not abrogate G0/1 phase arrest in the HepG2 cell line. Biochemical and Biophysical Research Communications, 2006, 347, 601-607.	2.1	12