
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8799453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air quality management in China: Issues, challenges, and options. Journal of Environmental Sciences, 2012, 24, 2-13.	3.2	462
2	Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment, 2008, 42, 8442-8452.	1.9	409
3	Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003. Environmental Science & Technology, 2006, 40, 5312-5318.	4.6	406
4	Updated Emission Inventories for Speciated Atmospheric Mercury from Anthropogenic Sources in China. Environmental Science & amp; Technology, 2015, 49, 3185-3194.	4.6	356
5	The impact of the "Air Pollution Prevention and Control Action Plan―on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Science of the Total Environment, 2017, 580, 197-209.	3.9	344
6	Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7760-7765.	3.3	308
7	Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmospheric Environment, 2013, 70, 39-50.	1.9	286
8	Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 2019, 126, 747-761.	4.8	278
9	Change in household fuels dominates the decrease in PM _{2.5} exposure and premature mortality in China in 2005–2015. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12401-12406.	3.3	262
10	Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. Environmental Science & Technology, 2016, 50, 13428-13435.	4.6	255
11	New Insight into SO ₂ Poisoning and Regeneration of CeO ₂ –WO ₃ /TiO ₂ and V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts for Low-Temperature NH ₃ –SCR. Environmental Science & Technology, 2018, 52, 7064-7071.	4.6	236
12	Impact Assessment of Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface Modeling Technique. Environmental Science & Technology, 2011, 45, 9293-9300.	4.6	222
13	Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering, 2020, 6, 1423-1431.	3.2	222
14	Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of the Total Environment, 2018, 621, 819-826.	3.9	206
15	Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 2013, 77, 453-463.	1.9	199
16	Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmospheric Environment, 2010, 44, 1515-1523.	1.9	194
17	Estimated Contributions of Emissions Controls, Meteorological Factors, Population Growth, and Changes in Baseline Mortality to Reductions in Ambient PM2.5 and PM2.5-Related Mortality in China, 2013–2017. Environmental Health Perspectives, 2019, 127, 67009.	2.8	186
18	Air quality and health benefits from fleet electrification in China. Nature Sustainability, 2019, 2, 962-971.	11.5	174

#	Article	IF	CITATIONS
19	Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. Environmental Science & Technology, 2017, 51, 9950-9959.	4.6	152
20	A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants. Environmental Science & Technology, 2018, 52, 2400-2408.	4.6	152
21	Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Science of the Total Environment, 2019, 660, 1191-1200.	3.9	149
22	Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO ₂ and NO _{<i>X</i>} Emissions Reduction in East China. Environmental Science and Technology Letters, 2017, 4, 221-227.	3.9	142
23	Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 2017, 17, 77-92.	1.9	137
24	Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired Power Plants in China. Environmental Science & amp; Technology, 2012, 46, 6385-6392.	4.6	136
25	Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing. Environmental Science & Technology, 2017, 51, 13502-13508.	4.6	132
26	Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 2011, 45, 6347-6358.	1.9	124
27	Impacts of coal burning on ambient PM _{2.5} pollution in China. Atmospheric Chemistry and Physics, 2017, 17, 4477-4491.	1.9	124
28	Mercury Flows in China and Global Drivers. Environmental Science & amp; Technology, 2017, 51, 222-231.	4.6	121
29	Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 2417-2433.	1.9	114
30	A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science and Engineering, 2014, 8, 631-649.	3.3	111
31	Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. Scientific Reports, 2016, 6, 28815.	1.6	110
32	Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005–2015. Environment International, 2019, 132, 105111.	4.8	104
33	Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution, 2018, 239, 544-553.	3.7	100
34	Measure-Specific Effectiveness of Air Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013–2017. Environmental Science & Technology, 2019, 53, 8938-8946.	4.6	95
35	Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio, 2018, 47, 198-215.	2.8	92
36	Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China. Environmental Science & Technology, 2018, 52, 1644-1654.	4.6	88

#	Article	IF	CITATIONS
37	Regional transport in Beijing-Tianjin-Hebei region and its changes during 2014–2017: The impacts of meteorology and emission reduction. Science of the Total Environment, 2020, 737, 139792.	3.9	85
38	Mitigation Options of Atmospheric Hg Emissions in China. Environmental Science & Technology, 2018, 52, 12368-12375.	4.6	84
39	Design Strategies for CeO ₂ –MoO ₃ Catalysts for DeNO _{<i>x</i>} and Hg ⁰ Oxidation in the Presence of HCI: The Significance of the Surface Acid–Base Properties. Environmental Science & Technology, 2015, 49, 12388-12394.	4.6	81
40	Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010. Atmospheric Chemistry and Physics, 2012, 12, 11153-11163.	1.9	80
41	Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 2014, 190, 166-175.	3.7	78
42	Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8206-8213.	3.3	78
43	Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon and carbon monoxide from household coal combustion in China. Scientific Reports, 2016, 6, 19306.	1.6	77
44	The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. Chemical Engineering Journal, 2017, 326, 561-569.	6.6	75
45	Mitigation Potential of Mercury Emissions from Coal-Fired Power Plants in China. Energy & Fuels, 2012, 26, 4635-4642.	2.5	73
46	Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China. Comptes Rendus - Geoscience, 2015, 347, 358-367.	0.4	71
47	Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality. Environmental Science & Technology, 2017, 51, 1007-1016.	4.6	71
48	Global health effects of future atmospheric mercury emissions. Nature Communications, 2021, 12, 3035.	5.8	71
49	Mercury sorption study of halides modified bio-chars derived from cotton straw. Chemical Engineering Journal, 2016, 302, 305-313.	6.6	70
50	Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts. Scientific Reports, 2016, 6, 35992.	1.6	69
51	Material Flow for the Intentional Use of Mercury in China. Environmental Science & Technology, 2016, 50, 2337-2344.	4.6	69
52	Quantification of the enhanced effectiveness of NO _{<i>x</i>} control from simultaneous reductions of VOC and NH ₃ for reducing air pollution in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics, 2018, 18,	1.9	68
53	7799-7814. Emission-Limit-Oriented Strategy To Control Atmospheric Mercury Emissions in Coal-Fired Power Plants toward the Implementation of the Minamata Convention. Environmental Science & Technology, 2018, 52, 11087-11093.	4.6	68
54	Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. Fuel, 2016, 163, 232-239.	3.4	66

#	Article	IF	CITATIONS
55	Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China. Atmospheric Chemistry and Physics, 2017, 17, 13103-13118.	1.9	64
56	Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing. Environmental Pollution, 2018, 238, 230-237.	3.7	64
57	Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. Chemical Engineering Journal, 2017, 315, 251-261.	6.6	62
58	Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 2013, 447, 123-132.	3.9	61
59	Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. Environmental Pollution, 2012, 171, 109-117.	3.7	60
60	Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling. Atmospheric Chemistry and Physics, 2019, 19, 3447-3462.	1.9	60
61	New Insight into Atmospheric Mercury Emissions from Zinc Smelters Using Mass Flow Analysis. Environmental Science & Technology, 2015, 49, 3532-3539.	4.6	58
62	Deep Learning for Prediction of the Air Quality Response to Emission Changes. Environmental Science & Technology, 2020, 54, 8589-8600.	4.6	58
63	Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study. Atmospheric Chemistry and Physics, 2020, 20, 14347-14359.	1.9	57
64	Quantifying Nonlinear Multiregional Contributions to Ozone and Fine Particles Using an Updated Response Surface Modeling Technique. Environmental Science & Technology, 2017, 51, 11788-11798.	4.6	55
65	Evaluation of One-Dimensional and Two-Dimensional Volatility Basis Sets in Simulating the Aging of Secondary Organic Aerosol with Smog-Chamber Experiments. Environmental Science & Technology, 2015, 49, 2245-2254.	4.6	53
66	Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. Atmospheric Chemistry and Physics, 2018, 18, 8279-8291.	1.9	53
67	Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 2013, 111, 621-627.	3.4	52
68	Flow Analysis of the Mercury Associated with Nonferrous Ore Concentrates: Implications on Mercury Emissions and Recovery in China. Environmental Science & Technology, 2016, 50, 1796-1803.	4.6	52
69	Optimization of a NO <i>_x</i> and VOC Cooperative Control Strategy Based on Clean Air Benefits. Environmental Science & Technology, 2022, 56, 739-749.	4.6	52
70	Mercury mass flow in iron and steel production process and its implications for mercury emission control. Journal of Environmental Sciences, 2016, 43, 293-301.	3.2	51
71	Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chemical Engineering Journal, 2017, 307, 544-552.	6.6	51
72	Primary Suppliers Driving Atmospheric Mercury Emissions through Global Supply Chains. One Earth, 2019, 1, 254-266.	3.6	50

#	Article	IF	CITATIONS
73	Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627.	1.3	50
74	Nonlinear relationships between air pollutant emissions and PM2.5-related health impacts in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2019, 661, 375-385.	3.9	49
75	Mercury enrichment and its effects on atmospheric emissions in cement plants of China. Atmospheric Environment, 2014, 92, 421-428.	1.9	48
76	Environmental Justice Aspects of Exposure to PM _{2.5} Emissions from Electric Vehicle Use in China. Environmental Science & amp; Technology, 2015, 49, 13912-13920.	4.6	47
77	Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2–WO3/TiO2 catalyst via in situ DRIFTS. Fuel, 2019, 239, 162-172.	3.4	46
78	Meeting Minamata: Cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. Energy Policy, 2016, 88, 485-494.	4.2	43
79	Impact of ultra-low emission technology retrofit on the mercury emissions and cross-media transfer in coal-fired power plants. Journal of Hazardous Materials, 2020, 396, 122729.	6.5	43
80	Promoting SO ₂ Resistance of a CeO ₂ (5)-WO ₃ (9)/TiO ₂ Catalyst for Hg ⁰ Oxidation via Adjusting the Basicity and Acidity Sites Using a CuO Doping Method. Environmental Science & Technology, 2020, 54, 1889-1897.	4.6	42
81	Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China. Geophysical Research Letters, 2020, 47, e2020GL087721.	1.5	40
82	First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 2021, 55, 1497-1507.	4.6	40
83	Understanding of Aerosol–Climate Interactions in China: Aerosol Impacts on Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under Future Climate and Emission Scenarios. Current Pollution Reports, 2019, 5, 36-51.	3.1	39
84	Characteristics of mercury cycling in the cement production process. Journal of Hazardous Materials, 2016, 302, 27-35.	6.5	37
85	Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015. Atmospheric Chemistry and Physics, 2017, 17, 10423-10433.	1.9	36
86	Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. Journal of Environmental Sciences, 2015, 33, 125-134.	3.2	35
87	Least-cost control strategy optimization for air quality attainment of Beijing–Tianjin–Hebei region in China. Journal of Environmental Management, 2019, 245, 95-104.	3.8	35
88	A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. Journal of Environmental Management, 2020, 253, 109751.	3.8	35
89	Synergistic Mercury Removal by Conventional Pollutant Control Strategies for Coal-Fired Power Plants in China. Journal of the Air and Waste Management Association, 2010, 60, 722-730.	0.9	33
90	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 2017, 17, 9133-9144.	1.9	33

#	Article	IF	CITATIONS
91	Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China. Atmospheric Chemistry and Physics, 2019, 19, 13627-13646.	1.9	33
92	Foliage/atmosphere exchange of mercury in a subtropical coniferous forest in south China. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2006-2016.	1.3	32
93	Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China. Science of the Total Environment, 2018, 626, 519-527.	3.9	32
94	Sulfur trioxide emissions from coal-fired power plants in China and implications on future control. Fuel, 2020, 261, 116438.	3.4	31
95	Potential environmental risk of trace elements in fly ash and gypsum from ultra–low emission coal–fired power plants in China. Science of the Total Environment, 2021, 798, 149116.	3.9	31
96	Non-negligible contributions to human health from increased household air pollution exposure during the COVID-19 lockdown in China. Environment International, 2022, 158, 106918.	4.8	30
97	Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China. Atmospheric Chemistry and Physics, 2018, 18, 495-509.	1.9	29
98	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	3.9	29
99	Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 6737-6747.	1.9	29
100	Assessment of Regional Mercury Deposition and Emission Outflow in Mainland China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9868-9890.	1.2	28
101	Behavior of Sulfur Oxides in Nonferrous Metal Smelters and Implications on Future Control and Emission Estimation. Environmental Science & amp; Technology, 2019, 53, 8796-8804.	4.6	28
102	A Holistic Perspective Is Needed To Ensure Success of Minamata Convention on Mercury. Environmental Science & Technology, 2017, 51, 1070-1071.	4.6	27
103	Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Science of the Total Environment, 2014, 496, 668-677.	3.9	26
104	Mercury concentrations in forest soils and stream waters in northeast and south China. Science of the Total Environment, 2014, 496, 714-720.	3.9	26
105	Mercury flows in large-scale gold production and implications for Hg pollution control. Journal of Environmental Sciences, 2018, 68, 91-99.	3.2	26
106	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. Environmental Science & Technology, 2020, 54, 13409-13418.	4.6	24
107	Synergetic PM2.5 and O3 control strategy for the Yangtze River Delta, China. Journal of Environmental Sciences, 2023, 123, 281-291.	3.2	24
108	Measurements of mercury speciation and fine particle size distribution on combustion of China coal seams. Fuel, 2013, 104, 732-738.	3.4	23

#	Article	IF	CITATIONS
109	Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown. Science of the Total Environment, 2021, 750, 142323.	3.9	21
110	Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption. Environmental Science & amp; Technology, 2018, 52, 5125-5134.	4.6	19
111	Real-time source contribution analysis of ambient ozone using an enhanced meta-modeling approach over the Pearl River Delta Region of China. Journal of Environmental Management, 2020, 268, 110650.	3.8	19
112	Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning. Science of the Total Environment, 2020, 722, 137701.	3.9	19
113	Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting. Science of the Total Environment, 2021, 754, 142285.	3.9	19
114	Highly Resolved Inventory of Mercury Release to Water from Anthropogenic Sources in China. Environmental Science & Technology, 2021, 55, 13860-13868.	4.6	19
115	Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China. Environmental Pollution, 2021, 289, 117860.	3.7	19
116	A Review on Adsorption Technologies for Mercury Emission Control. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 155-162.	1.3	18
117	Measurement of size-fractionated particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury. Science of the Total Environment, 2019, 675, 176-183.	3.9	17
118	Subtropical Forests Act as Mercury Sinks but as Net Sources of Gaseous Elemental Mercury in South China. Environmental Science & Technology, 2020, 54, 2772-2779.	4.6	17
119	Improving Flue Gas Mercury Removal in Waste Incinerators by Optimization of Carbon Injection Rate. Environmental Science & Technology, 2018, 52, 1940-1945.	4.6	16
120	Source and sectoral contribution analysis of PM2.5 based on efficient response surface modeling technique over Pearl River Delta Region of China. Science of the Total Environment, 2020, 737, 139655.	3.9	16
121	Chemical deactivation of Selective Catalytic Reduction catalyst: Investigating the influence and mechanism of SeO2 poisoning. Fuel, 2020, 269, 117435.	3.4	16
122	Modeling the heterogeneous oxidation of elemental mercury by chlorine in flue gas. Fuel, 2020, 262, 116506.	3.4	14
123	Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019. Environmental Science & Technology, 2022, 56, 6956-6967.	4.6	14
124	Minamata Convention on Mercury: Chinese progress and perspectives. National Science Review, 2017, 4, 677-679.	4.6	13
125	Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. Environmental Pollution, 2019, 250, 1032-1043.	3.7	13
126	Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	13

#	Article	IF	CITATIONS
127	Gaseous and Particulate Chlorine Emissions From Typical Iron and Steel Industry in China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032729.	1.2	13
128	Developing a statistical model to explain the observed decline of atmospheric mercury. Atmospheric Environment, 2020, 243, 117868.	1.9	12
129	Improvement of NH3 resistance over CuO/TiO2 catalysts for elemental mercury oxidation in a wide temperature range. Catalysis Today, 2021, 376, 276-284.	2.2	12
130	Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	12
131	The silver linings of mercury: Reconsideration of its impacts on living organisms from a multi-timescale perspective. Environment International, 2021, 155, 106670.	4.8	12
132	Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. Journal of Environmental Sciences, 2020, 95, 99-110.	3.2	11
133	Emission characteristics of heavy metals from a typical copper smelting plant. Journal of Hazardous Materials, 2022, 424, 127311.	6.5	11
134	Source contribution analysis of PM2.5 using Response Surface Model and Particulate Source Apportionment Technology over the PRD region, China. Science of the Total Environment, 2022, 818, 151757.	3.9	11
135	Impacts of Removal Compensation Effect on the Mercury Emission Inventories for Nonferrous Metal (Zinc, Lead, and Copper) Smelting in China. Environmental Science & Technology, 2022, 56, 2163-2171.	4.6	11
136	Mercury emission and speciation from industrial gold production using roasting process. Journal of Geochemical Exploration, 2016, 170, 72-77.	1.5	10
137	Mercury accumulation in soil from atmospheric deposition in temperate steppe of Inner Mongolia, China. Environmental Pollution, 2020, 258, 113692.	3.7	10
138	Quantification of the enhancement of PM2.5 concentration by the downward transport of ozone from the stratosphere. Chemosphere, 2020, 255, 126907.	4.2	10
139	Global Economic Structure Transition Boosts Atmospheric Mercury Emissions in China. Earth's Future, 2021, 9, e2021EF002076.	2.4	10
140	Data Assimilation of Ambient Concentrations of Multiple Air Pollutants Using an Emission-Concentration Response Modeling Framework. Atmosphere, 2020, 11, 1289.	1.0	9
141	Predicting the Nonlinear Response of PM2.5 and Ozone to Precursor Emission Changes with a Response Surface Model. Atmosphere, 2021, 12, 1044.	1.0	9
142	Effect of the Coal Preparation Process on Mercury Flows and Emissions in Coal Combustion Systems. Environmental Science & Technology, 2021, 55, 13687-13696.	4.6	9
143	Improvements of response surface modeling with self-adaptive machine learning method for PM2.5 and O3 predictions. Journal of Environmental Management, 2022, 303, 114210.	3.8	9
144	Enhanced mercury control but increased bromine and sulfur trioxides emissions after using bromine injection technology based on full-scale experiment. Fuel, 2021, 285, 119130.	3.4	8

#	Article	IF	CITATIONS
145	Mimicking atmospheric photochemical modeling with a deep neural network. Atmospheric Research, 2022, 265, 105919.	1.8	8
146	Mercury emission characteristics and mechanism in the raw mill system of cement clinker production. Journal of Hazardous Materials, 2022, 430, 128403.	6.5	8
147	Elevated Gaseous Oxidized Mercury Revealed by a Newly Developed Speciated Atmospheric Mercury Monitoring System. Environmental Science & Technology, 2022, 56, 7707-7715.	4.6	7
148	Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg0 oxidation activity and hydrothermal resistance. Journal of Hazardous Materials, 2021, 408, 124427.	6.5	6
149	Response of fine particulate matter and ozone to precursors emission reduction in the Yangtze River Delta andits policy implications. Chinese Science Bulletin, 2022, 67, 2079-2088.	0.4	4
150	Responses of nitrogen and sulfur deposition to NH3 emission control in the Yangtze River Delta, China. Environmental Pollution, 2022, 308, 119646.	3.7	4
151	Differentiated emission control strategy based on comprehensive evaluation of multi-media pollution: Case of mercury emission control. Journal of Environmental Sciences, 2023, 123, 222-234.	3.2	3
152	Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS Environmental Au, 0, , .	3.3	3
153	Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China. Atmosphere, 2020, 11, 1301.	1.0	2
154	Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	1
155	Air Pollution and Lung Cancer Risks. , 2019, , 29-40.		1
156	Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. Journal of Environmental Sciences, 2022, , .	3.2	1