Dan Yakir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8799287/publications.pdf

Version: 2024-02-01

91828 109264 7,420 71 35 69 h-index citations g-index papers 80 80 80 8632 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.	4.2	2,778
2	Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	501
3	Contribution of Semi-Arid Forests to the Climate System. Science, 2010, 327, 451-454.	6.0	491
4	Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature, 1996, 380, 515-517.	13.7	296
5	Internal Conductance to CO2 Diffusion and C18OO Discrimination in C3 Leaves. Plant Physiology, 2000, 123, 201-214.	2.3	172
6	Using stable isotopes of water in evapotranspiration studies. Hydrological Processes, 2000, 14, 1407-1421.	1.1	157
7	A coupled model of the global cycles of carbonyl sulfide and CO ₂ : A possible new window on the carbon cycle. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 842-852.	1.3	149
8	Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nature Geoscience, 2013, 6, 186-190.	5.4	137
9	Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiology, 2011, 31, 637-648.	1.4	136
10	Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biology, 2004, 10, 393-407.	4.2	126
11	Physiology–phenology interactions in a productive semiâ€arid pine forest. New Phytologist, 2008, 178, 603-616.	3.5	123
12	Relationships between carbonyl sulfide (COS) and CO ₂ during leaf gas exchange. New Phytologist, 2010, 186, 869-878.	3.5	110
13	Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology, 2013, 33, 26-36.	1.4	102
14	Respiration acclimation contributes to high carbonâ€use efficiency in a seasonally dry pine forest. Global Change Biology, 2008, 14, 1553-1567.	4.2	101
15	Nonâ€climatic variations in the oxygen isotopic compositions of plants. Global Change Biology, 1998, 4, 835-849.	4.2	99
16	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
17	Reviews and syntheses: Carbonyl sulfide as aÂmulti-scale tracer for carbon and water cycles. Biogeosciences, 2018, 15, 3625-3657.	1.3	98
18	Ecohydrology of a semiâ€arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology, 2010, 3, 143-154.	1.1	93

#	Article	IF	Citations
19	Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 674.	0.8	83
20	Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Global Change Biology, 2011, 17, 1536-1548.	4.2	78
21	Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Scientific Reports, 2018, 8, 996.	1.6	78
22	The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone. Remote Sensing of Environment, 2007, 109, 416-428.	4.6	77
23	Towards an advanced assessment of the hydrological vulnerability of forests to climate changeâ€induced drought. New Phytologist, 2014, 201, 712-716.	3.5	76
24	Resilience to seasonal heat wave episodes in a Mediterranean pine forest. New Phytologist, 2016, 210, 485-496.	3.5	74
25	Quantifying transpirable soil water and its relations to tree water use dynamics in a waterâ€limited pine forest. Ecohydrology, 2014, 7, 409-419.	1.1	69
26	Pan-European delta 13C values of air and organic matter from forest ecosystems. Global Change Biology, 2005, 11, 1065-1093.	4.2	60
27	Impact of Agricultural Land-use Change on Carbon Storage in Boreal Alaska. Global Change Biology, 2004, 10, 452-472.	4.2	59
28	Leaf respiration and alternative oxidase in fieldâ€grown alpine grasses respond to natural changes in temperature and light. New Phytologist, 2011, 189, 1027-1039.	3.5	57
29	Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements. Agricultural and Forest Meteorology, 2015, 211-212, 115-127.	1.9	57
30	Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Molecular Breeding, 2009, 23, 179-195.	1.0	55
31	Association between Carbonyl Sulfide Uptake and ¹⁸ î" during Gas Exchange in C ₃ and C ₄ Leaves. Plant Physiology, 2011, 157, 509-517.	2.3	49
32	Mortality versus survival in droughtâ€affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Functional Ecology, 2019, 33, 901-912.	1.7	48
33	Effects of Carbonyl Sulfide and Carbonic Anhydrase on Stomatal Conductance. Plant Physiology, 2012, 158, 524-530.	2.3	44
34	Water limitation to soil CO ₂ efflux in a pine forest at the semiarid "timberline― Journal of Geophysical Research, 2009, 114, .	3.3	42
35	Differential Impacts of Land Use and Precipitation on "Ecosystem Water Yield― Water Resources Research, 2018, 54, 5457-5470.	1.7	40
36	Seeking the "point of no return―in the sequence of events leading to mortality of mature trees. Plant, Cell and Environment, 2021, 44, 1315-1328.	2.8	39

#	Article	IF	CITATIONS
37	Partitioning evapotranspiration and its long-term evolution in a dry pine forest using measurement-based estimates of soil evaporation. Agricultural and Forest Meteorology, 2020, 281, 107831.	1.9	37
38	Plant invasion of newly exposed hypersaline Dead Sea shores. Nature, 1995, 374, 803-805.	13.7	36
39	Contribution of soil respiration in tropical, temperate, and boreal forests to the 180 enrichment of atmospheric O2. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	36
40	El Nino and tree growth near Jerusalem over the last 20 years. Global Change Biology, 1996, 2, 97-101.	4.2	33
41	Evidence for large carbon sink and long residence time in semiarid forests based on 15 year flux and inventory records. Global Change Biology, 2020, 26, 1626-1637.	4.2	31
42	Natureâ€based framework for sustainable afforestation in global drylands under changing climate. Global Change Biology, 2022, 28, 2202-2220.	4.2	30
43	Temporal and spatial patterns of soil water following wildfire-induced changes in plant communities in the Great Basin in Nevada, USA. Plant and Soil, 2004, 262, 1-12.	1.8	28
44	Assessment of temporal changes in aboveground forest tree biomass using aerial photographs and allometric equations. Canadian Journal of Forest Research, 2006, 36, 2585-2594.	0.8	27
45	Assessing canopy performance using carbonyl sulfide measurements. Global Change Biology, 2018, 24, 3486-3498.	4.2	25
46	Evidence for efficient nonevaporative leafâ€toâ€air heat dissipation in a pine forest under drought conditions. New Phytologist, 2021, 232, 2254-2266.	3.5	25
47	High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide using midâ€IR quantum cascade laser. Global Change Biology, 2010, 16, 2496-2503.	4.2	24
48	Global enzymes: Sphere of influence. Nature, 2002, 416, 795-795.	13.7	23
49	The importance of tree internal water storage under drought conditions. Tree Physiology, 2022, 42, 771-783.	1.4	23
50	Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography, 2019, 28, 1351-1365.	2.7	22
51	Springtime ecosystem-scale monoterpene fluxes from Mediterranean pine forests across a precipitation gradient. Agricultural and Forest Meteorology, 2017, 237-238, 150-159.	1.9	15
52	Differential responses to two heatwave intensities in a Mediterranean citrus orchard are identified by combining measurements of fluorescence and carbonyl sulfide (COS) and CO ₂ uptake. New Phytologist, 2021, 230, 1394-1406.	3.5	14
53	Effect of Surface Heterogeneity on the Boundary-Layer Height: A Case Study at a Semi-Arid Forest. Boundary-Layer Meteorology, 2018, 169, 233-250.	1.2	13
54	Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. Tree Physiology, 2019, 39, 1767-1782.	1.4	13

#	Article	IF	CITATIONS
55	Method for accurate measurement of infrared emissivity for opaque low-reflectance materials. Applied Optics, 2019, 58, 4599.	0.9	13
56	Systematic errors in the measurement of emissivity caused by directional effects. Applied Optics, 2003, 42, 1839.	2.1	12
57	Effect of Secondary Circulations on the Surface–Atmosphere Exchange of Energy at an Isolated Semi-arid Forest. Boundary-Layer Meteorology, 2018, 169, 209-232.	1.2	11
58	Bark Transpiration Rates Can Reach Needle Transpiration Rates Under Dry Conditions in a Semi-arid Forest. Frontiers in Plant Science, 2021, 12, 790684.	1.7	9
59	<i>In situ</i> , direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution. New Phytologist, 2022, 235, 1344-1350.	3.5	9
60	Partitioning of canopy and soil CO ₂ fluxes in a pine forest at the dry timberline across a 13-year observation period. Biogeosciences, 2020, 17, 699-714.	1.3	8
61	Leaf relative uptake of carbonyl sulfide to CO ₂ seen through the lens of stomatal conductance–photosynthesis coupling. New Phytologist, 2022, 235, 1729-1742.	3.5	8
62	Dualâ€reference' method for highâ€precision infrared measurement of leaf surface temperature under field conditions. New Phytologist, 2021, 232, 2535-2546.	3 . 5	7
63	Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2569-2584.	1.9	7
64	Assessing climatic benefits from forestation potential in semi-arid lands. Environmental Research Letters, 2021, 16, 104039.	2.2	6
65	Ecophysiological adjustments of a pine forest to enhance early spring activity in hot and dry climate. Environmental Research Letters, 2020, 15, 114054.	2.2	6
66	Soil–atmosphere exchange of carbonyl sulfide in a Mediterranean citrus orchard. Atmospheric Chemistry and Physics, 2019, 19, 3873-3883.	1.9	4
67	Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. Ecological Applications, 2021, 31, e02312.	1.8	4
68	Contrasting turbulent transport regimes explain cooling effect in a semi-arid forest compared to surrounding shrubland. Agricultural and Forest Meteorology, 2019, 269-270, 19-27.	1.9	3
69	Ecophysiology of an urban citrus orchard. Urban Forestry and Urban Greening, 2021, 65, 127361.	2.3	1
70	Foreword by the Guest Editors: Environmental Chemistry. Israel Journal of Chemistry, 2002, 42, NA-NA.	1.0	0
71	Carbon and Energy Balance of Dry Mediterranean Pine Forests: A Case Study. Managing Forest Ecosystems, 2021, , 279-301.	0.4	0