
Yabin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8798892/publications.pdf Version: 2024-02-01

YARIN ZHANC

#	Article	IF	CITATIONS
1	A hierarchical origami moisture collector with laser-textured microchannel array for a plug-and-play irrigation system. Journal of Materials Chemistry A, 2021, 9, 5630-5638.	10.3	29
2	Self-Propelled and Electrobraking Synergetic Liquid Manipulator toward Microsampling and Bioanalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 14741-14751.	8.0	17
3	Facile carboxylation of natural eggshell membrane for highly selective uranium (VI) adsorption from radioactive wastewater. Environmental Science and Pollution Research, 2021, 28, 45134-45143.	5.3	16
4	An integrated separating system constructed by laser-patterned commercially available materials towards oily domestic sewage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126566.	4.7	3
5	A fishbone-inspired liquid splitter enables directional droplet transportation and spontaneous separation. Journal of Materials Chemistry A, 2021, 9, 9719-9728.	10.3	31
6	Self-pumping and scalable fog collector with diode-like micro-hole arrays inspired by natural asymmetric wettability. Applied Materials Today, 2020, 21, 100851.	4.3	18
7	Programmable 3D printed wheat awn-like system for high-performance fogdrop collection. Chemical Engineering Journal, 2020, 399, 125139.	12.7	36
8	Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics, 2020, 10, 7287-7318.	10.0	58
9	Micro/Nanomachines: from Functionalization to Sensing and Removal. Advanced Materials Technologies, 2019, 4, 1800636.	5.8	79
10	Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of <i>C. diff</i> toxins. Science Advances, 2019, 5, eaau9650.	10.3	169
11	Scalable and sustainable synthesis of carbon microspheres via a purification-free strategy for sodium-ion capacitors. Journal of Power Sources, 2018, 379, 33-40.	7.8	44
12	Graphene-coupled Ti ₃ C ₂ MXenes-derived TiO ₂ mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. Journal of Materials Chemistry A, 2018, 6, 1017-1027.	10.3	133
13	Enhanced Removal of Toxic Heavy Metals Using Swarming Biohybrid Adsorbents. Advanced Functional Materials, 2018, 28, 1806340.	14.9	118
14	Automated Control of Multifunctional Magnetic Spores Using Fluorescence Imaging for Microrobotic Cargo Delivery. , 2018, , .		4
15	Spore-derived color-tunable multi-doped carbon nanodots as sensitive nanosensors and intracellular imaging agents. Sensors and Actuators B: Chemical, 2018, 271, 128-136.	7.8	24
16	Sodium storage in a promising MoS ₂ –carbon anode: elucidating structural and interfacial transitions in the intercalation process and conversion reactions. Nanoscale, 2018, 10, 11165-11175.	5.6	26
17	Recent progress on micro- and nano-robots: towards in vivo tracking and localization. Quantitative Imaging in Medicine and Surgery, 2018, 8, 461-479.	2.0	64
18	Selective surface tension induced patterning on flexible textiles via click chemistry. Nanoscale, 2017, 9, 4777-4786.	5.6	11

YABIN ZHANG

#	Article	IF	CITATIONS
19	Elucidating the Intercalation Pseudocapacitance Mechanism of MoS ₂ –Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion-Based Hybrid Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 32745-32755.	8.0	156
20	Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors. Energy Storage Materials, 2017, 9, 195-205.	18.0	153
21	Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 292-302.	10.3	118
22	A composite guidance law through reference trajectory tracking for Mars entry guidance. , 2017, , .		0
23	Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy, 2016, 27, 627-637.	16.0	232
24	Nanoparticles: Bioinspired Superhydrophobic Fe ₃ O ₄ @Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill (Adv. Mater. Interfaces 13/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	2
25	Bioinspired Superhydrophobic Fe ₃ O ₄ @Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill. Advanced Materials Interfaces, 2015, 2, 1500234.	3.7	76
26	Green synthesis of open porous NiO films with an excellent capacitance performance. Chemical Communications, 2014, 50, 3443.	4.1	56
27	A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface. Journal of Materials Chemistry A, 2014, 2, 7845-7852.	10.3	63
28	pH-Responsive Wettable Fabrics with Hierarchical Structures. Chemistry Letters, 2014, 43, 553-555.	1.3	8
29	Micromechanics of Lotus Fibers. Chemistry Letters, 2014, 43, 1137-1139.	1.3	22
30	Conductive and transparent superhydrophobic films on various substrates by <i>in situ</i> deposition. Applied Physics Letters, 2013, 102, .	3.3	26
31	Recent progress of double-structural and functional materials with special wettability. Journal of Materials Chemistry, 2012, 22, 799-815.	6.7	175
32	Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112.	6.7	177