Andrs Camilo Garca-Castro

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8798492/andres-camilo-garcia-castro-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27	307	11	17
papers	citations	h-index	g-index
29	388	5.1	3.43
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
27	Incipient geometric lattice instability of cubic fluoroperovskites. <i>Physical Review B</i> , 2021 , 104,	3.3	2
26	Unveiling the mechanisms behind the ferroelectric response in the Sr(Nb,Ta)ON oxynitrides. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 17142-17149	3.6	3
25	Oxyfluoride superlattices KTaO3/KMF3 (M=Zn,Ni): Structural and electronic phenomena. <i>Physical Review B</i> , 2020 , 102,	3.3	1
24	Pressure-Induced Layered Structure in BaWO4. <i>Journal of Physics: Conference Series</i> , 2020 , 1541, 01201	10.3	
23	Insights in the A- and B-site® Radii Influence in the Polar Character of ABF4. <i>Journal of Physics:</i> Conference Series, 2020 , 1541, 012012	0.3	O
22	Octahedral distortion and electronic properties of the antiperovskite oxide Ba3SiO: First principles study. <i>Journal of Physics and Chemistry of Solids</i> , 2020 , 136, 109126	3.9	3
21	Search for ferroelectricity in fluoroperovskites: comparison between LiNiF3 and NaNiF3. <i>Journal of Physics: Conference Series</i> , 2019 , 1247, 012045	0.3	1
20	DFT Study on Metamagnetics EM(OH)2 (M = Mn, Fe, Co, Ni). <i>Journal of Physics: Conference Series</i> , 2019 , 1247, 012046	0.3	0
19	Hybrid-improper ferroelectric behavior in Ba3SiO/Ba3GeO oxide antiperovskite superlattices. <i>European Physical Journal B</i> , 2019 , 92, 1	1.2	O
18	Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide LaSrMnO Thin Films. <i>ACS Nano</i> , 2019 , 13, 3457-3465	16.7	5
17	Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. <i>Npj Quantum Materials</i> , 2019 , 4,	5	36
16	Anharmonic contribution to the stabilization of Mg(OH) from first principles. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 17799-17808	3.6	6
15	Electrostatic potential and valence modulation in LaSrMnO thin films. Scientific Reports, 2018, 8, 14313	4.9	6
14	Direct Magnetization-Polarization Coupling in BaCuF_{4}. <i>Physical Review Letters</i> , 2018 , 121, 117601	7.4	12
13	Room temperature ferroelectricity in fluoroperovskite thin films. <i>Scientific Reports</i> , 2017 , 7, 7182	4.9	17
12	Spin texture induced by oxygen vacancies in strontium perovskite (001) surfaces: A theoretical comparison between SrTiO3 and SrHfO3. <i>Physical Review B</i> , 2016 , 93,	3.3	17
11	Strain-Engineered Multiferroicity in Pnma NaMnF_{3} Fluoroperovskite. <i>Physical Review Letters</i> , 2016 , 116, 117202	7.4	29

LIST OF PUBLICATIONS

10	Prediction and control of spin polarization in a Weyl semimetallic phase of BiSb. <i>Physical Review B</i> , 2016 , 94,	3.3	31
9	Multiferroic BaCoF4 in Thin Film Form: Ferroelectricity, Magnetic Ordering, and Strain. <i>ACS Applied Materials & M</i>	9.5	14
8	Tailoring LaAlO3/SrTiO3 Interface Metallicity by Oxygen Surface Adsorbates. <i>Nano Letters</i> , 2016 , 16, 2739-43	11.5	28
7	Charge Transfer to LaAlO3/SrTiO3 Interfaces Controlled by Surface Water Adsorption and Proton Hopping. <i>Advanced Functional Materials</i> , 2016 , 26, 5453-5459	15.6	15
6	Noncollinear magnetism in post-perovskites from first principles: Comparison between CaRhO3 and NaNiF3. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 689-694	1.3	4
5	Geometric ferroelectricity in fluoroperovskites. <i>Physical Review B</i> , 2014 , 89,	3.3	48
4	First-principles study of vibrational and noncollinear magnetic properties of the perovskite to postperovskite pressure transition of NaMnF3. <i>Physical Review B</i> , 2014 , 90,	3.3	15
3	Piezoelectric and ferroelectric response enhancement in multiferroic YCrO 3 films by reduction in thickness. <i>Materials Letters</i> , 2014 , 114, 148-151	3.3	9
2	Temperature dependence of magnetic and magnetotransport properties in BiFeO3 thin films by pulsed laser deposition. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1636, 1		
1	Engineering of Ferroic Orders in Thin Films by Anionic Substitution. <i>Advanced Functional Materials</i> ,2107	'1 35 56	4