
Aleksei Sagidullin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8798322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Humic Acids as a New Type of Methane Hydrate Formation Promoter and a Possible Mechanism for the Hydrate Growth Enhancement. ACS Sustainable Chemistry and Engineering, 2022, 10, 521-529.	3.2	10
2	STRUCTURE, MORPHOLOGY, AND COMPOSITION OF NATURAL GAS HYDRATES SAMPLED IN THE KEDR-1 MUD VOLCANO (LAKE BAIKAL). Journal of Structural Chemistry, 2021, 62, 889-896.	0.3	1
3	Melting of tetrahydrofuran hydrate in pores: An investigation by low-field NMR relaxation. Marine and Petroleum Geology, 2021, 129, 105096.	1.5	15
4	Hydrate-based separation of the CO2 + H2 mixtures. Phase equilibria with isopropanol aqueous solutions and hydrogen solubility in CO2 hydrate. International Journal of Hydrogen Energy, 2021, 46, 32904-32913.	3.8	23
5	Studying the influence of key parameters on the methane hydrate dissociation in order to improve the storage efficiency. Journal of Energy Storage, 2021, 44, 103288.	3.9	22
6	Texture, composition and properties of plugs formed by carbon dioxide hydrate and wax. Petroleum Exploration and Development, 2021, 48, 1462-1470.	3.0	0
7	Analysis of methane hydrate nucleation in water-in-oil emulsions: Isothermal vs constant cooling ramp method and new method for data treatment. Journal of Molecular Liquids, 2020, 318, 114018.	2.3	19
8	Impact of biodegradation of oil on the kinetics of gas hydrate formation and decomposition. Journal of Petroleum Science and Engineering, 2020, 192, 107211.	2.1	12
9	Response of plankton communities to the remediation of reservoirs contaminated with heavy metals: a field experiment. Water and Ecology, 2020, 26, 104-113.	0.3	0
10	Effect of Temperature on the Rate of Methane Hydrate Nucleation in Water-in-Crude Oil Emulsion. Energy & Fuels, 2019, 33, 3155-3161.	2.5	18
11	Efficient removal of Cd(II), Cu(II), Pb(II), and Zn(II) from wastewater and natural water using submersible device. Environmental Science and Pollution Research, 2019, 26, 6368-6377.	2.7	5
12	An Xps and Low-Temperature Nitrogen Adsorption Study of the Structure of Carbon-Fluorocarbon Nanocomposites. Journal of Structural Chemistry, 2018, 59, 1841-1848.	0.3	2
13	The Effect of Oxidation of Humic Acids on the Adsorption of Cd (II), Cu (II), Pb (II) and Zn (II) by a Humate-containing Hybrid Adsorbent. Chemical Science International Journal, 2018, 24, 1-4.	0.3	0
14	Removal of Cd(II), Zn(II), and Cu(II) from aqueous solutions using humic-modified moss (Polytrichum) Tj ETQq0 C) 0 ₃ rgBT /C	Overlock 10 T
15	Hybrid Adsorbent for Removal of Cd(II), Cu(II), Pb(II) and Zn(II) from Waters Using Submersible Device. Chemical Science International Journal, 2017, 20, 1-17.	0.3	1
16	Modified carbon sorbents for removal of toxic metals (Zn, Cd, Cu) from contaminated reservoirs. Russian Journal of Applied Chemistry, 2015, 88, 244-249.	0.1	0

17	Development of semi-industrial synthesis of calcium polysulfide solution and determination of the content of sulfide ions in solution. Russian Journal of Applied Chemistry, 2015, 88, 1403-1408.	0.1	4
18	Humic-modified natural and synthetic carbon adsorbents for the removal of Cd(II) from aqueous solutions. Journal of Environmental Chemical Engineering, 2015, 3, 1939-1946.	3.3	12

#	Article	IF	CITATIONS
19	Adsorbents for Mercury Vapour Recovery in Demercuration Technology. Adsorption Science and Technology, 2014, 32, 693-705.	1.5	2
20	Sorption of cadmium ions from aqueous solutions onto nanoporous modified carbon sorbents. Russian Journal of Applied Chemistry, 2013, 86, 1867-1872.	0.1	2