Hans Rudolf Widmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8798197/publications.pdf

Version: 2024-02-01

89 papers

2,210 citations

218677 26 h-index 254184 43 g-index

89 all docs 89 docs citations

89 times ranked 2614 citing authors

#	Article	IF	Citations
1	Using a Cell-tracer Injection to Investigate the Origin of Neointima-forming Cells in a Rat Saccular Side Wall Model. Journal of Visualized Experiments, 2022, , .	0.3	O
2	Influence of inferior petrosal sinus drainage symmetry on detection of adenomas in Cushing's syndrome. Journal of Neuroradiology, 2021, 48, 10-15.	1.1	16
3	Tocilizumab Reduces Vasospasms, Neuronal Cell Death, and Microclot Formation in a Rabbit Model of Subarachnoid Hemorrhage. Translational Stroke Research, 2021, 12, 894-904.	4.2	17
4	Sustained neuronal viability by paracrine factors: new opportunities for endothelial progenitor cell secretome. Neural Regeneration Research, 2021, 16, 1429.	3.0	0
5	Persistent bone impairment despite long-term control of hyperprolactinemia and hypogonadism in men and women with prolactinomas. Scientific Reports, 2021, 11, 5122.	3.3	11
6	Patterns of Neointima Formation After Coil or Stent Treatment in a Rat Saccular Sidewall Aneurysm Model. Stroke, 2021, 52, 1043-1052.	2.0	17
7	Co-Expression of Nogo-A in Dopaminergic Neurons of the Human Substantia Nigra Pars Compacta Is Reduced in Parkinson's Disease. Cells, 2021, 10, 3368.	4.1	5
8	Aneurysm wall cellularity affects healing after coil embolization: assessment in a rat saccular aneurysm model. Journal of NeuroInterventional Surgery, 2020, 12, 621-625.	3. 3	14
9	Functional muscle strength recovery from nail gun injury to the primary motor cortex. Regenerative Medicine, 2020, 15, 1603-1609.	1.7	1
10	Arterial Pouch Microsurgical Bifurcation Aneurysm Model in the Rabbit. Journal of Visualized Experiments, 2020, , .	0.3	7
11	The Role of Sartans in the Treatment of Stroke and Subarachnoid Hemorrhage: A Narrative Review of Preclinical and Clinical Studies. Brain Sciences, 2020, 10, 153.	2.3	12
12	Endothelial Progenitor Cell-Derived Factors Exert Neuroprotection in Cultured Cortical Neuronal Progenitor Cells. Cell Transplantation, 2020, 29, 096368972091268.	2.5	5
13	Systematic Review and Meta-analysis of Methodological Quality in In Vivo Animal Studies of Subarachnoid Hemorrhage. Translational Stroke Research, 2020, 11, 1175-1184.	4.2	13
14	Comparison of Aneurysm Patency and Mural Inflammation in an Arterial Rabbit Sidewall and Bifurcation Aneurysm Model under Consideration of Different Wall Conditions. Brain Sciences, 2020, 10, 197.	2.3	5
15	Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential. Cell Death and Differentiation, 2019, 26, 1048-1061.	11.2	7
16	Conditioned medium from Endothelial Progenitor Cells promotes number of dopaminergic neurons and exerts neuroprotection in cultured ventral mesencephalic neuronal progenitor cells. Brain Research, 2019, 1720, 146330.	2.2	9
17	Systemic and CSF Interleukin-1α Expression in a Rabbit Closed Cranium Subarachnoid Hemorrhage Model: An Exploratory Study. Brain Sciences, 2019, 9, 249.	2.3	6
18	Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier. Beilstein Journal of Nanotechnology, 2019, 10, 941-954.	2.8	12

#	Article	IF	CITATIONS
19	Endothelial Progenitor Cells Conditioned Medium Supports Number of GABAergic Neurons and Exerts Neuroprotection in Cultured Striatal Neuronal Progenitor Cells. Cell Transplantation, 2019, 28, 367-378.	2.5	10
20	Testing bioresorbable stent feasibility in a rat aneurysm model. Journal of NeuroInterventional Surgery, 2019, 11, 1050-1054.	3.3	17
21	Systematic Review of In Vivo Animal Models of Subarachnoid Hemorrhage: Species, Standard Parameters, and Outcomes. Translational Stroke Research, 2019, 10, 250-258.	4.2	35
22	Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells. Brain Circulation, 2019, 5, 106.	1.8	4
23	A Combination of NT-4/5 and GDNF Is Favorable for Cultured Human Nigral Neural Progenitor Cells. Cell Transplantation, 2018, 27, 648-653.	2.5	4
24	Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors. Springer Series in Translational Stroke Research, 2018, , 129-152.	0.1	4
25	Combination of cell transplantation and glial cell line-derived neurotrophic factor-secreting encapsulated cells in Parkinson's disease. Brain Circulation, 2018, 4, 114.	1.8	5
26	Neurotrophic factor-based strategies to enhance survival and differentiation of neural progenitor cells toward the dopaminergic phenotype. Brain Circulation, 2018, 4, 139.	1.8	6
27	A Subpopulation of Dopaminergic Neurons Coexpresses Serotonin in Ventral Mesencephalic Cultures but not after Intrastriatal Transplantation in a Rat Model of Parkinson's Disease. Cell Transplantation, 2017, 26, 679-691.	2.5	6
28	Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons. Brain Research, 2017, 1668, 56-64.	2.2	7
29	Simultaneous Transplantation of Fetal Ventral Mesencephalic Tissue and Encapsulated Genetically Modified Cells Releasing GDNF in a Hemi-Parkinsonian Rat Model of Parkinson's Disease. Cell Transplantation, 2017, 26, 1572-1581.	2.5	10
30	Antagonization of the Nogo-Receptor 1 Enhances Dopaminergic Fiber Outgrowth of Transplants in a Rat Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2017, 11, 151.	3.7	3
31	Simultaneous transplantation of fetal ventral mesencephalic tissue and encapsulated genetically modified cells releasing GDNF in a hemi-parkinsonian rat model of Parkinson's disease. Cell Transplantation, 2017, , .	2.5	0
32	Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2016, 10, 87.	3.7	12
33	The effects of creatine supplementation on striatal neural progenitor cells depend on developmental stage. Amino Acids, 2016, 48, 1913-1927.	2.7	5
34	Stereolithographic models in the interdisciplinary planning of treatment for complex intracranial aneurysms. Acta Neurochirurgica, 2016, 158, 1711-1720.	1.7	11
35	The Cytoprotective Effects of Human Endothelial Progenitor Cell-Conditioned Medium against an Ischemic Insult Are Not Dependent on VEGF and IL-8. Cell Transplantation, 2016, 25, 735-747.	2.5	15
36	Response profiles of murine spiral ganglion neurons on multi-electrode arrays. Journal of Neural Engineering, 2016, 13, 016011.	3.5	15

#	Article	IF	Citations
37	Non-canonical actions of Nogo-A and its receptors. Biochemical Pharmacology, 2016, 100, 28-39.	4.4	19
38	Paracrine factors for neurodegenerative disorders: special emphasis on Parkinsonâ \in 2s disease. Neural Regeneration Research, 2016, 11, 570.	3.0	9
39	Characterization of Fetal Antigen 1/Delta-Like 1 Homologue Expressing Cells in the Rat Nigrostriatal System: Effects of a Unilateral 6-Hydroxydopamine Lesion. PLoS ONE, 2015, 10, e0116088.	2.5	4
40	High-flow venous pouch aneurysm in the rabbit carotid artery: A model for large aneurysms. Interventional Neuroradiology, 2015, 21, 407-411.	1.1	4
41	Rapid Recurrence of a Benign Meningial Perineurioma. World Neurosurgery, 2015, 84, 2074.e1-2074.e3.	1.3	2
42	Nogo-A and its functions beyond axonal inhibition: the controversial role of Nogo-A in Parkinson′s disease. Neural Regeneration Research, 2015, 10, 1223.	3.0	5
43	The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through P13-Kinase and MAP-Kinase. PLoS ONE, 2014, 9, e95731.	2.5	43
44	The Role of Microclot Formation in an Acute Subarachnoid Hemorrhage Model in the Rabbit. BioMed Research International, 2014, 2014, 1-10.	1.9	16
45	Early brain injury linearly correlates with reduction in cerebral perfusion pressure during the hyperacute phase of subarachnoid hemorrhage. Intensive Care Medicine Experimental, 2014, 2, 30.	1.9	15
46	Creatine supports propagation and promotes neuronal differentiation of inner ear progenitor cells. NeuroReport, 2014, 25, 446-451.	1.2	6
47	The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects. Journal of Visualized Experiments, 2014, , e52132.	0.3	4
48	Antagonizing Nogo-receptor 1 promotes the number of cultured dopaminergic neurons and elongates their neurites. NeuroReport, 2013, 24, 1047-1052.	1.2	11
49	Expression of Trefoil Factor 1 in the Developing and Adult Rat Ventral Mesencephalon. PLoS ONE, 2013, 8, e76592.	2.5	7
50	A new rabbit model for the study of early brain injury after subarachnoid hemorrhage. Journal of Neuroscience Methods, 2012, 208, 138-145.	2.5	23
51	Phosphocreatine Interacts with Phospholipids, Affects Membrane Properties and Exerts Membrane-Protective Effects. PLoS ONE, 2012, 7, e43178.	2.5	61
52	Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension. Experimental Cell Research, 2011, 317, 1649-1662.	2.6	9
53	Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson's disease. Brain Research, 2009, 1276, 39-49.	2.2	30
54	Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells. Neuroscience Letters, 2009, 464, 203-208.	2.1	7

#	Article	IF	CITATIONS
55	Endovascular and surgical treatment of spinal dural arteriovenous fistulas. Neuroradiology, 2008, 50, 869-876.	2.2	80
56	Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson's disease. Brain Research, 2008, 1218, 13-20.	2.2	25
57	Functions and effects of creatine in the central nervous system. Brain Research Bulletin, 2008, 76, 329-343.	3.0	303
58	Cell replacement therapy for intracerebral hemorrhage. Neurosurgical Focus, 2008, 24, E16.	2.3	35
59	Psychosocial and neurocognitive performance after spontaneous nonaneurysmal subarachnoid hemorrhage related to the APOE- 1μ 4 genotype: a prospective 5-year follow-up study. Journal of Neurosurgery, 2008, 109, 1019-1026.	1.6	23
60	Expansion and characterization of ventral mesencephalic precursor cells: Effect of mitogens and investigation of FA1 as a potential dopaminergic marker. Journal of Neuroscience Research, 2007, 85, 1884-1893.	2.9	18
61	Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord. Journal of Neuroscience Research, 2007, 85, 1863-1875.	2.9	27
62	Creatine promotes the GABAergic phenotype in human fetal spinal cord cultures. Brain Research, 2007, 1137, 50-57.	2.2	17
63	Creatine and neurotrophin-4/5 promote survival of nitric oxide synthase-expressing interneurons in striatal cultures. Neuroscience Letters, 2006, 395, 57-62.	2.1	11
64	GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon. Brain Research, 2006, 1069, 104-112.	2.2	53
65	Effect of GDNF on differentiation of cultured ventral mesencephalic dopaminergic and non-dopaminergic calretinin-expressing neurons. Brain Research, 2005, 1036, 163-172.	2.2	30
66	Creatine Supplementation Improves Dopaminergic Cell Survival and Protects against MPP+ Toxicity in an Organotypic Tissue Culture System. Cell Transplantation, 2005, 14, 537-550.	2.5	53
67	The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Research Bulletin, 2005, 68, 42-53.	3.0	60
68	Influence of oxygen therapy on glucose—lactate metabolism after diffuse brain injury. Journal of Neurosurgery, 2004, 101, 323-329.	1.6	25
69	Lipid-Mediated Glial Cell Line-Derived Neurotrophic Factor Gene Transfer to Cultured Porcine Ventral Mesencephalic Tissue. Experimental Neurology, 2002, 177, 40-49.	4.1	6
70	Liposome-mediated gene transfer to fetal human ventral mesencephalic explant cultures. Neuroscience Letters, 2001, 308, 169-172.	2.1	10
71	Sustained delivery of GDNF: towards a treatment for Parkinson's disease. Brain Research Reviews, 2001, 36, 222-229.	9.0	56
72	Nonviral Glial Cell-Derived Neurotrophic Factor Gene Transfer Enhances Survival of Cultured Dopaminergic Neurons and Improves Their Function after Transplantation in a Rat Model of Parkinson's Disease. Human Gene Therapy, 2000, 11, 1529-1541.	2.7	24

#	Article	IF	CITATIONS
73	Glial Cell Line-Derived Neurotrophic Factor Stimulates the Morphological Differentiation of Cultured Ventral Mesencephalic Calbindin- and Calretinin-Expressing Neurons. Experimental Neurology, 2000, 164, 71-81.	4.1	46
74	GDNF Increases the Density of Cells Containing Calbindin but Not of Cells Containing Calretinin in Cultured Rat and Human Fetal Nigral Tissue. Cell Transplantation, 1999, 8, 25-36.	2.5	36
75	GDNF, RET and GFRÎ \pm -1-3 mRNA expression in the developing human spinal cord and ganglia. NeuroReport, 1999, 10, 1433-1439.	1.2	24
76	Rat fetal ventral mesencephalon grown as solid tissue cultures: influence of culture time and BDNF treatment on dopamine neuron survival and function. Brain Research, 1998, 813, 313-322.	2.2	48
77	Effects of combined BDNF and GDNF treatment on cultured dopaminergic midbrain neurons. NeuroReport, 1998, 9, 1093-1096.	1.2	36
78	Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochemical Research, 1996, 21, 763-767.	3.3	37
79	Immunohistochemical Visualization of Brain-derived Neurotrophic Factor in the Rat Brain. European Journal of Neuroscience, 1995, 7, 1831-1839.	2.6	92
80	Okadaic acid potentiates heat-induced activation of erk2. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1265, 196-200.	4.1	5
81	Neurotrophin-4/5 Promotes Survival and Differentiation of Rat Striatal Neurons Developing in Culture. European Journal of Neuroscience, 1994, 6, 1669-1679.	2.6	91
82	Stimulation of GABAergic neuron differentiation by NT-4/5 in cultures of rat cerebral cortex. Developmental Brain Research, 1994, 80, 279-284.	1.7	57
83	Epidermal Growth Factor Induces PC12 Cell Differentiation in the Presence of the Protein Kinase Inhibitor Kâ€252a. Journal of Neurochemistry, 1994, 63, 1235-1245.	3.9	12
84	Rapid Phosphorylation of Phospholipase C? 1 by Brain-Derived Neurotrophic Factor and Neurotrophin-3 in Cultures of Embryonic Rat Cortical Neurons. Journal of Neurochemistry, 1993, 60, 2111-2123.	3.9	84
85	Down-regulation of phosphatidylinositol response to BDNF and NT-3 in cultures of cortical neurons. Brain Research, 1993, 614, 325-334.	2.2	31
86	BDNF protection of basal forebrain cholinergic neurons after axotomy. NeuroReport, 1993, 4, 363-366.	1.2	59
87	TGFα stimulation of phosphatidylinositol hydrolysis in mesencephalic cultures requires neuron-glia interactions. NeuroReport, 1993, 4, 407-410.	1.2	12
88	Neurotrophin-induced trk receptor phosphorylation and cholinergic neuron response in primary cultures of embryonic rat brain neurons. NeuroReport, 1992, 3, 885-888.	1.2	44
89	Stimulation of Phosphatidylinositol Hydrolysis by Brainâ€Derived Neurotrophic Factor and Neurotrophinâ€3 in Rat Cerebral Cortical Neurons Developing in Culture. Journal of Neurochemistry, 1992, 59, 2113-2124.	3.9	39